98%
921
2 minutes
20
Intractable scratching is the characteristic of chronic itch, which represents a great challenge in clinical practice. However, the mechanism underlying chronic itch development is largely unknown. In the present study, we investigated the role of NMDA receptor in acute itch and in development of chronic itch. A mouse model was developed by painting DNFB to induce allergic contact dermatitis (ACD). We found that the expression of pNR1, which is a subunit of NMDA receptor, was significantly increased in the dorsal root ganglion in the DNFB model. The DNFB-evoked spontaneous scratching was blocked by the NMDA antagonist D-AP-5, the calcium-calmodulin-dependent protein kinase (CaMK) inhibitor KN-93, a CaMKIIα siRNA and the PKC inhibitor LY317615. Moreover, activation of PKC did not reverse the CaMKIIα knockdown-induced decrease in scratching, suggesting that PKC functions upstream of CaMKIIα. Thus, our study indicates that modulation of NR1 receptor by CaMKIIα plays an important role in the development of chronic itch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2020.02.011 | DOI Listing |
Medicine (Baltimore)
September 2025
Nutrition Department, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China.
Rationale: Extracorporeal membrane oxygenation (ECMO) is a life-support technology for refractory cardiac arrest, but the massive blood transfusions required during treatment significantly increase the risk of transfusion-related infections. Hepatitis E virus (HEV) - traditionally linked to fecal-oral transmission - is increasingly recognized as a transfusion-transmitted pathogen, especially in emergency settings where urgent blood product infusion is common and routine HEV screening in blood banks is often lacking. However, nursing strategies for managing acute HEV infection after ECMO remain poorly defined, highlighting the need to address this clinical gap.
View Article and Find Full Text PDFBMB Rep
September 2025
Department of Microbiology, Jeonbuk National University Medical School, Jeonju 54896; Department of R&D, Cutiimunebio Inc., Jeonju 54907, Korea.
Atopic dermatitis (AD) is a chronic dermatological disorder characterized by intense pruritus and eczematous lesions. Repeated topical application of 2,4-dinitrofluorobenzene (DNFB) in NC/Nga mice produces AD-like clinical symptoms that closely resemble human AD. N-Acetyl-L-Alanine (L-NAA), a derivative of L-Alanine, has unknown biological and physiological effects on cutaneous tissue.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; A∗STAR Skin Research Labs (A∗SRL), Skin Research Institute of Singapore (SRIS), Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), 8A Biomedical Grove, IMMUNOS Buildi
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczematous lesions, intense itching, and compromised skin barrier function. Despite the advent of new therapeutics, many individuals still face insufficient disease control, high costs, and relapse. Protease-activated receptor 2 (PAR-2), overexpressed in AD lesions, plays a central role in promoting inflammation, itch, and alterations in epidermal homeostasis.
View Article and Find Full Text PDFDermatol Ther (Heidelb)
September 2025
Department of Dermatology, Kyoto University, Kyoto, Japan.
Atopic dermatitis (AD) is a chronic inflammatory disease characterized by eczematous skin lesions, intense pruritus, skin pain, sleep disruption, and mental health disturbances. There remains a need for a therapeutic option that delivers durable efficacy, safety, and convenient dosing across the AD patient population. This review provides an overview of AD pathogenesis driven by T-cell imbalance and describes a novel therapeutic option targeting the OX40 receptor, a costimulatory molecule expressed specifically on activated T cells.
View Article and Find Full Text PDFBackground: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder characterized by complex interactions among Staphylococcus aureus colonization and immunologic, genetic, and environmental (SAIGE) triggers. Currently, no single therapy comprehensively addresses all triggers and the full spectrum of AD manifestations, highlighting an unmet need for therapies that simultaneously target all components of the disease continuum.
Methods: An expert panel conducted a structured literature review and developed consensus statements during a meeting in March 2025.