Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Intractable scratching is the characteristic of chronic itch, which represents a great challenge in clinical practice. However, the mechanism underlying chronic itch development is largely unknown. In the present study, we investigated the role of NMDA receptor in acute itch and in development of chronic itch. A mouse model was developed by painting DNFB to induce allergic contact dermatitis (ACD). We found that the expression of pNR1, which is a subunit of NMDA receptor, was significantly increased in the dorsal root ganglion in the DNFB model. The DNFB-evoked spontaneous scratching was blocked by the NMDA antagonist D-AP-5, the calcium-calmodulin-dependent protein kinase (CaMK) inhibitor KN-93, a CaMKIIα siRNA and the PKC inhibitor LY317615. Moreover, activation of PKC did not reverse the CaMKIIα knockdown-induced decrease in scratching, suggesting that PKC functions upstream of CaMKIIα. Thus, our study indicates that modulation of NR1 receptor by CaMKIIα plays an important role in the development of chronic itch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2020.02.011 | DOI Listing |