98%
921
2 minutes
20
An understanding of the interaction of water with perovskite is crucial in improving the structural stability of the perovskite. Hence, in this study, the structural and electronic properties of the γ-CsPbI(220) perovskite surface upon the adsorption of water molecules have been investigated based on density functional theory calculations. Also, we perform first-principles ab initio molecular dynamics simulations (AIMD) to explore the structural stability of the γ-CsPbI(220) perovskite surface in the presence of water molecules, and the results are compared with the conventional cubic CHNHPbI(100) perovskite surface. The water molecules show stronger interactions with the (220) surface of γ-CsPbI than the (100) surface of CHNHPbI. However, AIMD results demonstrate that the former is much more stable, and no trace of surface degradation was observed upon the adsorption of water molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp06341b | DOI Listing |
J Agric Food Chem
September 2025
Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100091, China.
l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Applied Sciences, National Institute of Technology Delhi, Delhi 110036, India.
The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.
View Article and Find Full Text PDFAdv Mater
September 2025
Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The orientation of MXene flakes has received increasing research attention as it plays a critical role in determining the performance of MXene-based assemblies. Engineering MXene flakes into horizontal or vertical orientations can offer distinct advantages such as higher electrical conductivity, higher mechanical strength, and more efficient ion/molecule transport across the flakes. However, the benefits of horizontal and vertical orientations are mutually exclusive, and both of them possess structural symmetry that restricts their ability for stimuli-responsive deformation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDF