Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, ., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation).

Abbreviations: PtdIns3P: phosphatidylinositol-3-phosphate; PIK3C2A: class two alpha phosphatidylinositol 3-kinase; PIK3C3/VPS34: class three phosphatidylinositol 3-kinase; ATG: autophagy associated genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469446PMC
http://dx.doi.org/10.1080/15548627.2020.1732687DOI Listing

Publication Analysis

Top Keywords

shear stress
16
primary cilium-dependent
12
primary cilium
12
cilium-dependent autophagy
8
epithelial cells
8
recruited primary
8
phosphatidylinositol 3-kinase
8
primary
6
autophagy
6
ptdins3p
5

Similar Publications

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF

Objectives: Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.

View Article and Find Full Text PDF

Objective: Pediatric pulmonary vein stenosis (PVS) is associated with substantial morbidity and mortality for the subset of patients with recurrent or progressive disease. The molecular mechanisms underlying the development and trajectory of PVS remain unclear. This study characterizes the transcriptome of clinical and phenotypic subtypes of PVS.

View Article and Find Full Text PDF