Publications by authors named "Asma Boukhalfa"

Autophagy, an evolutionarily conserved process, plays an important role in cellular homeostasis and human diseases. Cardiovascular dysfunction, which presents during cancer treatment or in cancer-free individuals years after treatment, is a growing clinical challenge. Millions of cancer survivors and patients face an unpredictable risk of developing cardiotoxicity.

View Article and Find Full Text PDF

Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5.

View Article and Find Full Text PDF

Background: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of young obese and pre-diabetic women and exhibit suppression of cardio-reparative AT2R. Here, we investigated whether NP-6A4, a new AT2R agonist with the FDA designation for pediatric cardiomyopathy, mitigate heart disease in ZDF-F rats by restoring AT2R expression.

View Article and Find Full Text PDF

Chemotherapy-induced impairment of autophagy is implicated in cardiac toxicity induced by anti-cancer drugs. Imperfect translation from rodent models and lack of in vitro models of toxicity has limited investigation of autophagic flux dysregulation, preventing design of novel cardioprotective strategies based on autophagy control. Development of an adult heart tissue culture technique from a translational model will improve investigation of cardiac toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Autophagy can now be measured non-invasively using specialized iron oxide nanoparticles that are taken up by autophagosomes and can be tracked using imaging techniques like MRI and near-infrared fluorescence.
  • In a study with live mice, these nanoparticles allowed researchers to quantify autophagy changes due to various conditions, including ischemia-reperfusion injury and starvation, as well as to assess the effects of chemotherapy drugs.
  • The findings suggest that enhancing autophagic activity, particularly through pre-starvation before chemotherapy, may protect heart function and improve survival rates.
View Article and Find Full Text PDF

The primary cilium (PC), a plasma membrane microtubule-based structure, is a sensor of extracellular chemical and mechanical stress stimuli. Upon ciliogenesis, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. We demonstrated in a recent study that IFT20 and ATG16L1 interact in a multiprotein complex.

View Article and Find Full Text PDF

The primary cilium (PC) regulates signalization linked to external stress sensing. Previous works established a functional interplay between the PC and the autophagic machinery. When ciliogenesis is promoted by serum deprivation, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC.

View Article and Find Full Text PDF

Unlabelled: Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures.

View Article and Find Full Text PDF

Cells subjected to stress situations mobilize specific membranes and proteins to initiate autophagy. Phosphatidylinositol-3-phosphate (PI3P), a crucial lipid in membrane dynamics, is known to be essential in this context. In addition to nutriments deprivation, autophagy is also triggered by fluid-flow induced shear stress in epithelial cells, and this specific autophagic response depends on primary cilium (PC) signaling and leads to cell size regulation.

View Article and Find Full Text PDF

Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress.

View Article and Find Full Text PDF

Cilia are microtubule-based organelles located at the cell surface of many eukaryotic cell types. Cilia control different cellular functions ranging from motility (for motile cilia) to signal transduction pathways (for primary cilia). A variety of signaling pathways are coordinated by this organelle during development, cell migration and cell differentiation.

View Article and Find Full Text PDF