Advances in Targeted Autophagy Modulation Strategies to Treat Cancer and Associated Treatment-Induced Cardiotoxicity.

Pharmaceuticals (Basel)

Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, #80, Boston, MA 02111, USA.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autophagy, an evolutionarily conserved process, plays an important role in cellular homeostasis and human diseases. Cardiovascular dysfunction, which presents during cancer treatment or in cancer-free individuals years after treatment, is a growing clinical challenge. Millions of cancer survivors and patients face an unpredictable risk of developing cardiotoxicity. Cardiotoxicity due to cancer treatment, as well as cancer progression, has been linked to autophagy dysregulation. Modulating autophagy has been further proposed as a therapeutic treatment for both cancer and cardiovascular disorders. The safe and effective use of autophagy modulation as a cardioprotective strategy during cancer treatment especially requires careful consideration and experimentation to minimize the impact on cancer treatment. We focus here on recent advances in targeted autophagy modulation strategies that utilize interdisciplinary approaches in biomedical sciences and are potentially translatable to treat cardiotoxicity and improve cancer treatment outcomes. This review highlights non-small molecule autophagy modulators to enhance targeted therapy, nanomedicine for autophagy modulation and monitoring, and in vitro models and future experiments needed to bring novel autophagy discoveries from basic research to clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114528PMC
http://dx.doi.org/10.3390/ph18050671DOI Listing

Publication Analysis

Top Keywords

cancer treatment
20
autophagy modulation
16
autophagy
9
cancer
9
advances targeted
8
targeted autophagy
8
modulation strategies
8
treatment
7
modulation
4
strategies treat
4

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.

Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF