98%
921
2 minutes
20
Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, , and its -bridged cyclophane-like analogue, . Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of and is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of , an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen ().
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b12762 | DOI Listing |
Water Res
September 2025
College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University - Quzhou, Quzhou 324000, China. Electronic address:
This study presents a renewable electricity-driven microbial electrosynthesis (MES) system integrated with biological nitrogen removal (BNR) to achieve carbon-negative wastewater treatment. The MES system converts CO₂ into acetate, which is directly utilized as an internal carbon source for denitrification. Incorporation of biochar-derived conductive materials enhanced electron transfer, increasing acetate productivity to 1.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2025
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Center, Sacred Heart College (Autonomous), affiliated to Thiruvalluvar University, Tirupattur, Tamil Nadu, 635 601, India.
Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDF