98%
921
2 minutes
20
Force haptic reappearance technology is considered to be one of the top ten technologies that can change human life in the future. It has broad application prospects and market demand. Most of the existing medical robots, especially the remote diagnosis and treatment robots, lack haptic feedback, or the calculation of feedback force is insufficient. Haptic reappearance technology is an effective method to solve the problem of haptic presence and improve the practicability of medical robot. The ultimate goal of the force haptic reappearance system is to let the operator feel the haptic feedback when interacting with the soft tissue model in the virtual environment in real time. Haptic device is the necessary condition to realize force haptic reappearance, and it is an essential part of the system. Its important role is to introduce the external force imposed by the operator into the virtual environment, and let the operator feel the force in the virtual environment, which effectively guarantees the operator's sense of reality and immersion when interacting with the virtual environment. Therefore, starting with the key technology of force and haptic reappearance system, this paper studies the construction of force and haptic reappearance system. Soft tissue surface model is drawn by OpenGL, and hand model is drawn by 3Ds Max. The haptic reappearance and visual feedback of soft tissue model of hand palpation are realized. The quality of feedback is evaluated. The haptic reappearance is stable and realistic, and the visual feedback is smooth. This indicates that the system has a certain application value and is worth to promote to the public.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105344 | DOI Listing |
Comput Methods Programs Biomed
July 2020
School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China. Electronic address:
Force haptic reappearance technology is considered to be one of the top ten technologies that can change human life in the future. It has broad application prospects and market demand. Most of the existing medical robots, especially the remote diagnosis and treatment robots, lack haptic feedback, or the calculation of feedback force is insufficient.
View Article and Find Full Text PDFFront Psychol
October 2012
Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology Tsukuba, Ibaraki, Japan.
Using four experiments, this study investigates what amount of delay brings about maximal impairment under delayed visual feedback and whether a critical interval, such as that in audition, also exists in vision. The first experiment measured the Grooved Pegboard test performance as a function of visual feedback delays from 120 to 2120 ms in 16 steps. Performance sharply decreased until about 490 ms, then more gradually until 2120 ms, suggesting that two mechanisms were operating under delayed visual feedback.
View Article and Find Full Text PDF