98%
921
2 minutes
20
Carbon nanotubes (CNTs) are an emerging drug delivery system, but their success is thwarted by potential toxicity concerns. and studies imply toxic potential of CNTs, but their potential to influence toxicity of coadministered compounds still remains elusive. Therefore, the present study was conducted to determine the effect of multiwalled CNTs (MWCNTs) on the toxicity of cytotoxic compounds in macrophage (RAW 264.7), lung epithelial (A549), and breast cancer (MCF-7) cell lines. The results suggest that hydrophilicity/lipophilicity of the compounds is a critical parameter. The correlation between log and enhanced cytotoxic activity followed an inverted U-shaped curve and log close to 1 exhibited the highest increase in cytotoxicity. Further, the increase in cytotoxicity of drug/MWCNT combinations was proportional to the degree of cellular uptake of MWCNTs. A mathematical model was developed and validated with a test set of compounds. These results suggest that MWCNTs act as a "Trojan horse" for increased intracellular delivery of drugs resulting in enhanced cytotoxic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.9b00370 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.
High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Department of Materials Science and Engineering, Westlake University, Hangzhou 310030, PR China.
Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.
View Article and Find Full Text PDF