Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tautomerization, the interconversion between two constitutional molecular isomers, is ubiquitous in nature, plays a major role in chemistry and is perceived as an ideal switch function for emerging molecular-scale devices. Within free-base porphyrin, porphycene or phthalocyanine, this process involves the concerted or sequential hopping of the two inner hydrogen atoms between equivalent nitrogen sites of the molecular cavity. Electronic and vibronic changes that result from this NH tautomerization, as well as details of the switching mechanism, were extensively studied with optical spectroscopies, even with single-molecule sensitivity. The influence of atomic-scale variations of the molecular environment and submolecular spatial resolution of the tautomerization could only be investigated using scanning probe microscopes, at the expense of detailed information provided by optical spectroscopies. Here, we combine these two approaches, scanning tunnelling microscopy (STM) and fluorescence spectroscopy, to study the tautomerization within individual free-base phthalocyanine (HPc) molecules deposited on a NaCl-covered Ag(111) single-crystal surface. STM-induced fluorescence (STM-F) spectra exhibit duplicate features that we assign to the emission of the two molecular tautomers. We support this interpretation by comparing hyper-resolved fluorescence maps(HRFMs) of the different spectral contributions with simulations that account for the interaction between molecular excitons and picocavity plasmons. We identify the orientation of the molecular optical dipoles, determine the vibronic fingerprint of the tautomers and probe the influence of minute changes in their atomic-scale environment. Time-correlated fluorescence measurements allow us to monitor the tautomerization events and to associate the proton dynamics to a switching two-level system. Finally, optical spectra acquired with the tip located at a nanometre-scale distance from the molecule show that the tautomerization reaction occurs even when the tunnelling current does not pass through the molecule. Together with other observations, this remote excitation indicates that the excited state of the molecule is involved in the tautomerization reaction path.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-019-0620-xDOI Listing

Publication Analysis

Top Keywords

fluorescence spectroscopy
8
optical spectroscopies
8
tautomerization reaction
8
tautomerization
7
molecular
6
fluorescence
5
single-molecule tautomerization
4
tautomerization tracking
4
tracking space-
4
space- time-resolved
4

Similar Publications

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Atom-precise coinage metal nanoclusters for near-infrared emission: excited-state dynamics and mechanisms.

Chem Soc Rev

September 2025

State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.

View Article and Find Full Text PDF

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Time-resolved data acquisition is crucial for compositional analysis using Laser-Induced Breakdown Spectroscopy (LIBS). It can be managed by adjusting the delay time and gate width of the spectrometer. This study describes the compositional analysis of molybdenum (Mo) ore utilizing charge coupled device (CCD) and intensified charge-coupled device (ICCD) based LIBS systems.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF