Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited.

Results: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila. We identify a large number of condition-specific, expression quantitative trait loci (local-eQTLs) with infection-specific ones located in regions enriched for FOX transcription factor motifs. By assessing the allelic imbalance in the transcriptomes of 19 F1 hybrid lines from a large round robin design, we independently attribute a robust cis-regulatory effect to only 10% of these detected local-eQTLs. However, additional analyses indicate that many local-eQTLs may act in trans instead. Comparison of the transcriptomes of DGRP lines that were either susceptible or resistant to Pseudomonas entomophila infection reveals nutcracker as the only differentially expressed gene. Interestingly, we find that nutcracker is linked to infection-specific eQTLs that correlate with its expression level and to enteric infection susceptibility. Further regulatory analysis reveals one particular eQTL that significantly decreases the binding affinity for the repressor Broad, driving differential allele-specific nutcracker expression.

Conclusions: Our collective findings point to a large number of infection-specific cis- and trans-acting eQTLs in the DGRP, including one common non-coding variant that lowers enteric infection susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966807PMC
http://dx.doi.org/10.1186/s13059-019-1912-zDOI Listing

Publication Analysis

Top Keywords

enteric infection
12
drosophila genetic
8
genetic reference
8
reference panel
8
transcriptomes dgrp
8
dgrp lines
8
pseudomonas entomophila
8
large number
8
infection susceptibility
8
infection
5

Similar Publications

Microbiota, which plays a vital role in susceptibility to Clostridioides difficile infection (CDI), synthesizes butyrate. Enteric glia is a component of the enteric nervous system (ENS) and is affected by C. difficile toxins A (TcdA) and B (TcdB).

View Article and Find Full Text PDF

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Whole genome characterisation of DS-1-like G8P[4] rotavirus A strains circulating in South Africa between 2009 and 2021 reveals endemic sub-lineages and evidence of radical epitope changes.

Infect Genet Evol

September 2025

Next Generation Sequencing Unit, School of Biomedical Sciences, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa. Electronic address: N

The sub-Saharan African region bears the highest burden of rotavirus-associated morbidity and mortality, with substantial genetic diversity observed in circulating strains despite vaccine introduction. The G8 genotype, originally predominant in bovine strains, has increasingly become prevalent in humans, suggesting a possible interface of animal-to-human transmission and highlighting its role in African strain diversity. In this study, we performed whole genome sequencing and evolutionary analysis of 21 archival G8P[4] strains collected through gastroenteritis surveillance in South Africa between 2009 and 2021 from children under five years of age.

View Article and Find Full Text PDF

Antibiotic growth promoters (AGPs) are increasingly subject to global regulatory restrictions and consumer pressure, driving the poultry industry toward antibiotic-free production systems. This shift has accelerated the search for effective alternatives, including innovative microbial additives, organic acids, phytogenics, and other bioactive compounds capable of supporting digestive function and enhancing immune competence in poultry. The present study reported the isolation and characterization of a novel Bacillus velezensis strain, BV-OLS1101, possessing robust probiotic attributes and a distinctive capacity to produce a serine protease subtilisin.

View Article and Find Full Text PDF

Residues 27T and 297A in VP2 contribute to the enhanced replication and pathogenicity of raccoon dog parvovirus.

J Virol

September 2025

Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Institute of Special Animal and Plant Sciences, Changchun, China.

Raccoon dog parvovirus (RDPV) is a highly contagious pathogen causing severe hemorrhagic enteritis that is fatal in young raccoon dogs. Since 2016, epidemiological investigations have documented recurrent outbreaks of RDPV, exhibiting heightened virulence; however, the molecular mechanisms driving this increased pathogenicity remain poorly understood. In this study, an alignment of 67 complete RDPV sequences identified two high-frequency amino acid mutations at positions 27 and 297 in the VP2 capsid protein that distinguish RDPV strains from before and after the 2016 outbreak.

View Article and Find Full Text PDF