Publications by authors named "Vincent Gardeux"

A key output of the NIH-Common Fund 4D Nucleome (4DN) project is the open publication of datasets related to the structure of the human cell nucleus and the genome. Recent years have seen a rapid expansion of multiplexed Fluorescence In Situ Hybridization (FISH) or FISH-omics methods, which quantify the spatial organization of chromatin in single cells, sometimes together with RNA and protein measurements, and provide an expanded understanding of how 3D higher-order chromosome structure relates to transcriptional activity and cell development in both health and disease. Despite this progress, results from Chromatin Tracing FISH-omics experiments are difficult to share, reuse, and subject to third-party downstream analysis due to the lack of standard specifications for data exchange.

View Article and Find Full Text PDF

Neurons producing Gonadotropin-Releasing Hormone (GnRH) are essential for human reproduction and have to migrate from nose to brain during prenatal life. Impaired GnRH neuron biology results in alterations of the reproductive axis, including delayed puberty and infertility, with considerable effects on quality of life and metabolic health. Although various genes have been implicated, the molecular causes of these conditions remain elusive, with most patients lacking a genetic diagnosis.

View Article and Find Full Text PDF

Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource.

View Article and Find Full Text PDF

Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The current method for detecting active Brown Adipose Tissue (BAT) using [F]-FDG PET/CT imaging is expensive and exposes patients to radiation, making it impractical for large studies.
  • Previous research indicates a correlation between BAT's Hounsfield Unit (HU) in CT scans and [F]-FDG uptake, which can help develop computational methods to predict BAT activity.
  • This study introduces convolutional neural networks (CNNs) to predict [F]-FDG uptake from unenhanced CT scans, achieving better accuracy and distinguishing subjects with active BAT more effectively than traditional methods.
View Article and Find Full Text PDF

Background: Interactions among cis-regulatory elements (CREs) play a crucial role in gene regulation. Various approaches have been developed to map these interactions genome-wide, including those relying on interindividual epigenomic variation to identify groups of covariable regulatory elements, referred to as chromatin modules (CMs). While CM mapping allows to investigate the relationship between chromatin modularity and gene expression, the computational principles used for CM identification vary in their application and outcomes.

View Article and Find Full Text PDF

Adipose tissue plasticity is orchestrated by molecularly and functionally diverse cells within the stromal vascular fraction (SVF). Although several mouse and human adipose SVF cellular subpopulations have by now been identified, we still lack an understanding of the cellular and functional variability of adipose stem and progenitor cell (ASPC) populations across human fat depots. To address this, we performed single-cell and bulk RNA sequencing (RNA-seq) analyses of >30 SVF/Lin- samples across four human adipose depots, revealing two ubiquitous human ASPC (hASPC) subpopulations with distinct proliferative and adipogenic properties but also depot- and BMI-dependent proportions.

View Article and Find Full Text PDF
Article Synopsis
  • Gut-draining mesenteric lymph nodes play a crucial role in shaping intestinal immune responses, with differences in stromal cell composition based on location.
  • The study identifies specific progenitor cells, CD34 stromal cells and fibroblastic reticular cells, that contribute to the rapid expansion of these lymph nodes from postnatal to aged stages.
  • An epigenomic analysis reveals distinct regulatory patterns in non-endothelial stromal cells, particularly highlighting the role of the Irf3 gene in cellular differentiation and function across different lymph node types.
View Article and Find Full Text PDF

Single-cell transcriptomics (scRNA-seq) has greatly advanced our ability to characterize cellular heterogeneity. However, scRNA-seq requires lysing cells, which impedes further molecular or functional analyses on the same cells. Here, we established Live-seq, a single-cell transcriptome profiling approach that preserves cell viability during RNA extraction using fluidic force microscopy, thus allowing to couple a cell's ground-state transcriptome to its downstream molecular or phenotypic behaviour.

View Article and Find Full Text PDF

Non-coding variants coordinate transcription factor (TF) binding and chromatin mark enrichment changes over regions spanning >100 kb. These molecularly coordinated regions are named "variable chromatin modules" (VCMs), providing a conceptual framework of how regulatory variation might shape complex traits. To better understand the molecular mechanisms underlying VCM formation, here, we mechanistically dissect a VCM-modulating noncoding variant that is associated with reduced chronic lymphocytic leukemia (CLL) predisposition and disease progression.

View Article and Find Full Text PDF

For more than 100 years, the fruit fly has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) approaches have transformed our ability to resolve cellular properties across systems, but are currently tailored toward large cell inputs (>1,000 cells). This renders them inefficient and costly when processing small, individual tissue samples, a problem that tends to be resolved by loading bulk samples, yielding confounded mosaic cell population read-outs. Here, we developed a deterministic, mRNA-capture bead and cell co-encapsulation dropleting system, DisCo, aimed at processing low-input samples (<500 cells).

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, identified in late 2019, has quickly become a global public health issue due to its higher transmission rates compared to its relative SARS-CoV.
  • Research indicates that the temperature in different parts of the respiratory system (33°C in the upper tract vs. 37°C in the lower tract) influences how effectively both viruses replicate.
  • At 33°C, SARS-CoV-2 shows increased replication rates and distinct immune response patterns, providing insights into its behavior and the factors influencing its spread and clinical symptoms.
View Article and Find Full Text PDF

Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of ( ) and 141 Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators.

View Article and Find Full Text PDF

Background: The evolution of embryological development has long been characterized by deep conservation. In animal development, the phylotypic stage in mid-embryogenesis is more conserved than either early or late stages among species within the same phylum. Hypotheses to explain this hourglass pattern have focused on purifying the selection of gene regulation.

View Article and Find Full Text PDF

Despite its popularity, chromatin immunoprecipitation followed by sequencing (ChIP-seq) remains a tedious (>2 d), manually intensive, low-sensitivity and low-throughput approach. Here, we combine principles of microengineering, surface chemistry, and molecular biology to address the major limitations of standard ChIP-seq. The resulting technology, FloChIP, automates and miniaturizes ChIP in a beadless fashion while facilitating the downstream library preparation process through on-chip chromatin tagmentation.

View Article and Find Full Text PDF

Single-cell omics enables researchers to dissect biological systems at a resolution that was unthinkable just 10 years ago. However, this analytical revolution also triggered new demands in 'big data' management, forcing researchers to stay up to speed with increasingly complex analytical processes and rapidly evolving methods. To render these processes and approaches more accessible, we developed the web-based, collaborative portal ASAP (Automated Single-cell Analysis Portal).

View Article and Find Full Text PDF

Background: Resistance to enteric pathogens is a complex trait at the crossroads of multiple biological processes. We have previously shown in the Drosophila Genetic Reference Panel (DGRP) that resistance to infection is highly heritable, but our understanding of how the effects of genetic variants affect different molecular mechanisms to determine gut immunocompetence is still limited.

Results: To address this, we perform a systems genetics analysis of the gut transcriptomes from 38 DGRP lines that were orally infected with Pseudomonas entomophila.

View Article and Find Full Text PDF

The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewing cell divisions and across the cell cycle is poorly understood. Here we assessed the interplay between OCT4 and SOX2 in controlling chromatin accessibility of mouse embryonic stem cells.

View Article and Find Full Text PDF

Size of organs/organisms is a polygenic trait. Many of the growth-regulatory genes constitute conserved growth signaling pathways. However, how these multiple genes are orchestrated at the systems level to attain the natural variation in size including sexual size dimorphism is mostly unknown.

View Article and Find Full Text PDF

Despite its widespread use, RNA-seq is still too laborious and expensive to replace RT-qPCR as the default gene expression analysis method. We present a novel approach, BRB-seq, which uses early multiplexing to produce 3' cDNA libraries for dozens of samples, requiring just 2 hours of hands-on time. BRB-seq has a comparable performance to the standard TruSeq approach while showing greater tolerance for lower RNA quality and being up to 25 times cheaper.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a disease prognosis framework that uses individual patient responses to predict outcomes, focusing on asthma exacerbations triggered by human rhinovirus.
  • A case study involving 23 pediatric asthmatic patients showed that their unique gene expression responses resulted in a classifier achieving 74% accuracy in predicting exacerbations, which is significantly better than traditional methods.
  • The findings suggest that analyzing dynamic gene-environment interactions at the pathway level can enhance precision medicine and improve disease management strategies.
View Article and Find Full Text PDF

Complex biological systems are composed of multiple cell types whose transcriptional activity can vary due to differences in cell state, environmental stimulation, or intrinsic programs. Conventional bulk analysis methods capture the average transcriptional programs of the cell population, thus missing the unique cellular signature of each single cell. In recent years, the development of single-cell RNA-sequencing (scRNA-seq) technologies has provided a powerful approach to dissect the cellular heterogeneity of complex biological systems.

View Article and Find Full Text PDF

Background: Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient.

View Article and Find Full Text PDF