98%
921
2 minutes
20
Aims: Inhibitor for the apoptosis-stimulating protein of p53 (iASPP) has been reported to be correlated with 5-fluorouracil (5-Fu) resistance in renal cell carcinoma. Here, we uncover mechanisms of iASPP-Nrf2-ROS regulation of 5-Fu resistance which are important for the development of alternative treatment strategies for gastric adenocarcinoma treatment.
Methods: We analyzed iASPP and Nrf2 through TCGA RNA-seq data, UALCAN analysis, and cBioPortal datasets. Intracellular ROS generation was determined by 2',7'-dichloro-fluorescin diacetate staining. Transwell was used to evaluate the invasion. The expression of iASPP, Nrf2, HO-1, and GSTP1 was tested using western blot.
Results: We found that iASPP KD led to an apparent 5-Fu-induced ROS accumulation in MGC803 and SCG790 cells. Accompanied by iASPP KD, Nrf2 was markedly decreased. iASPP-induced ROS inhibition relies on Nrf2, and due to both knocked down iASPP and Nrf2, the level of ROS did not show an obvious difference with Nrf2 KD solely. Similarly, iASPP KD failed to enhance the Nrf2 KD-mediated ROS accumulation after 5-Fu treatment, suggesting that iASPP-induced antioxidative effects related to 5-Fu resistance are partially dependent on Nrf2. Also, the combination of iASPP KD and Nrf2 KD did not show any synergistic effect on apoptosis after 5-Fu treatment in MGC803 and SCG790 cells. Further studies revealed that iASPP KD or Nrf2 KD could decrease the expression of HO-1 and GSTP1.
Conclusions: Our data highlight that iASPP plays a crucial role in the inhibition of 5-Fu-induced apoptosis resistance by removing ROS accumulation in gastric adenocarcinoma, and that the removal of ROS induced by iASPP is Nrf2 signaling dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-019-06022-6 | DOI Listing |
Metab Brain Dis
June 2024
Neurology, Xi'an International Medical Center Hospital, No. 777 Xitai Road, Xi'an, 710075, China.
Inhibitor of apoptosis stimulating protein of p53 (iASPP) is related to the pathogenesis of several neurological disorders by affecting the oxidative stress and survival of neurons. However, whether iASPP has a role in Parkinson disease (PD) remains to be determined. This work explored the potential regulatory effect of iASPP in an in vitro model of PD based on 1-methyl-4-phenylpyridinium (MPP)-evoked neurotoxicity of dopaminergic neurons in culture.
View Article and Find Full Text PDFCell Death Dis
February 2022
School of Life Science and Technology, Harbin Institute of Technology, 150001, Harbin, Heilongjiang Province, China.
The complex interaction between cancer cells and the immune microenvironment is a central regulator of tumor growth and the treatment response. Chemotherapy-induced senescence is accompanied by the senescence-associated secretion phenotype (SASP). However, the mechanisms underlying the regulation of the SASP remain the most poorly understood element of senescence.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
March 2021
Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
The inhibitor of apoptosis-stimulating protein of p53 (iASPP) acts as a key modulator of cellular protection against oxidative stress. In the present work, we assessed the role of iASPP in the regulation of cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). We found that H/R-exposed cardiomyocytes expressed decreased levels of iASPP.
View Article and Find Full Text PDFRedox Biol
September 2020
Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, 132013, China.
Oxidative stress is an important pathogenic manifestation of Alzheimer's disease (AD) that contributes to synaptic dysfunction, which precedes Aβ accumulation and neurofibrillary tangle formation. However, the molecular machineries that govern the decline of antioxidative defence in AD remains to be elucidated, and effective candidate for AD treatment is limited. Here, we showed that the decreases in the inhibitor of apoptosis-stimulating protein of p53 (iASPP) was associated with the vulnerability to oxidative stress in the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse brain.
View Article and Find Full Text PDFCell Death Differ
September 2020
The Institute of Intervention Vessel, Tongji University School of Medicine, Shanghai, China.
Acute lung injury (ALI) is a life-threatening disorder with high rates of morbidity and mortality. Reactive oxygen species and epithelial apoptosis are involved in the pathogenesis of acute lung injury. Ferroptosis, an iron-dependent non-apoptotic form of cell death, mediates its effects in part by promoting the accumulation of reactive oxygen species.
View Article and Find Full Text PDF