Functional supramolecular gels based on pillar[n]arene macrocycles.

Nanoscale

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Re

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr09532bDOI Listing

Publication Analysis

Top Keywords

supramolecular gels
24
functional supramolecular
8
noncovalent interactions
8
gels
6
supramolecular
5
gels based
4
based pillar[n]arene
4
pillar[n]arene macrocycles
4
macrocycles supramolecular
4
gels constructed
4

Similar Publications

As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.

View Article and Find Full Text PDF

A host/guest assembled hyaluronic acid-based supramolecular hydrogel with NIR-steered degradation capacity for enhanced tumor therapy through programmable drug release.

Carbohydr Polym

November 2025

Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un

Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.

View Article and Find Full Text PDF

High-dose ascorbic acid (AA) therapy induces cancer cell death primarily through its oxidized derivative, dehydroascorbic acid (DHA). However, maintaining therapeutic AA concentrations within tumors and overcoming intratumoral hypoxia pose critical barriers to the clinical application of AA. Herein, we develop an injectable supramolecular gel (αPD-1@Lv/HPAGel) composed of ascorbyl palmitate (an AA derivative), lovastatin-loaded hemoglobin nanoparticles (Lv/Hb-PDA), and the immune checkpoint inhibitor anti-PD-1 (αPD-1).

View Article and Find Full Text PDF

Multicomponent supramolecular polymer gels are a class of soft matter materials which form via the assembly of two or more small molecules. Different structures can be generated with interesting potential functions and applications. Insight into the assembly mechanism is key in the design of these systems for specific applications.

View Article and Find Full Text PDF

Traditional petroleum engineering materials have problems such as single functionality and poor environmental adaptability in terms of lost circulation control and enhanced oil recovery. Supramolecular gels, with their dynamic reversible non-covalent network structure, demonstrate unique advantages in this regard. This paper classifies supramolecular gels into hydrogen bond type, metal coordination type, host-guest type, and electrostatic interaction type based on differences in crosslinking structures.

View Article and Find Full Text PDF