Large-Scale Profiling of Cellular Metabolic Activities Using Deep C Labeling Medium.

Methods Mol Biol

Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recently developed deep labeling method allows for large-scale profiling of metabolic activities in human cells or tissues using isotope tracing with a highly C enriched culture medium in combination with liquid chromatography-high resolution mass spectrometry. This method generates mass spectrometry data sets where endogenous cellular products can be identified, and active pathways can be determined from observed C mass isotopomers of the various metabolites measured. Here we describe in detail the experimental procedures for deep labeling experiments in cultured mammalian cells, including synthesis of the deep labeling medium, experimental considerations for cell culture, metabolite extractions and sample preparation, and liquid chromatography-mass spectrometry. We also outline a workflow for the downstream data analysis using publicly available software.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0159-4_5DOI Listing

Publication Analysis

Top Keywords

deep labeling
16
large-scale profiling
8
metabolic activities
8
labeling medium
8
mass spectrometry
8
profiling cellular
4
cellular metabolic
4
deep
4
activities deep
4
labeling
4

Similar Publications

Mammography is a primary method for early screening, and developing deep learning-based computer-aided systems is of great significance. However, current deep learning models typically treat each image as an independent entity for diagnosis, rather than integrating images from multiple views to diagnose the patient. These methods do not fully consider and address the complex interactions between different views, resulting in poor diagnostic performance and interpretability.

View Article and Find Full Text PDF

Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF