Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair.

Biomaterials

Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA. Electronic address:

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The remarkable difference in cell type and matrix composition between two connected parts of a joint (cartilage and subchondral bone) makes it challenging to simultaneously regenerate both parts for joint repair. Thus we chemically designed a biphasic hydrogel made of two well-bonded shape-tunable hydrogel phases, termed bone-regenerating hydrogel (BRH) and cartilage-regenerating hydrogel (CRH). The BRH and CRH, encapsulating stem cells, were produced by photo-crosslinking bone and cartilage matrix-mimicking biopolymers and a nanobox (β-cyclodextrin) in situ in the subchondral bone defect and cartilage defect, respectively. The nanoboxes in BRH and CRH were loaded with osteogenic and chondrogenic differentiation inducers (melatonin and kartogenin) by host-guest interactions, respectively. Such interactions directed the sustained phase- and defect site-specific release of the inducers and subsequent site-specific stem cell differentiation into cartilage and bone forming cells for joint repair. The strategy opens up a new chemical approach to biomaterials with phase-specific drug release for tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2019.119644DOI Listing

Publication Analysis

Top Keywords

joint repair
12
site-specific release
8
stem cell
8
cell differentiation
8
differentiation inducers
8
parts joint
8
subchondral bone
8
brh crh
8
molecular recognition-directed
4
recognition-directed site-specific
4

Similar Publications

Praeruptorin A alleviates DSS-induced acute ulcerative colitis in mice via the STAT-1/-3 pathway.

Am J Physiol Regul Integr Comp Physiol

September 2025

Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Ulcerative colitis (UC) is a serious inflammatory bowel disease with a significantly increasing incidence globally. Current treatment options often exhibit unstable efficacy and notable side effects, making the exploration of alternative therapies particularly important. Peucedanum praeruptorum Dunn, a traditional Chinese medicine, contains various bioactive compounds, among which praeruptorin A (PA) has garnered attention for its anti-inflammatory potential.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Objective: To describe and compare arthroscopy-assisted (AA) with fluoroscopy-assisted (FA) minimally invasive plate osteosynthesis (MIPO) for simple transverse acetabular fractures.

Study Design: Ex vivo cadaveric study.

Sample Population: A total of 10 canine cadavers (>20 kg) without coxofemoral joint disease.

View Article and Find Full Text PDF

Background: This study aimed to evaluate how subscapularis tendon repair influences joint loads in relation to humeral offset and arm position.

Patients And Methods: Two fresh-frozen, whole-body cadaveric shoulders underwent a reverse total shoulder arthroplasty (rTSA) on the humeral side using an internal proprietary load-sensing system (LSS) (Goldilocks, Statera Medical, Montreal, Canada). In addition to three "complex" Activity Daily Life positions ("behind the back", "overhead reach", and "across the chest"), four standard postures (external rotation, extension, abduction, and flexion) were used to record the glenohumeral loads (Newtons) and their locations applied to the implant.

View Article and Find Full Text PDF