A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once

Gamma Visual Stimulation Induces a Neuroimmune Signaling Profile Distinct from Acute Neuroinflammation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (∼40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. However, the biochemical signaling mechanisms between 40 Hz neural activity and immune recruitment remain unknown. Here, we exposed wild-type male mice to 5-60 min of 40 Hz or control flicker and assessed cytokine and phosphoprotein networks known to play a role in immune function. We found that 40 Hz flicker leads to increases in the expression of cytokines which promote microglial phagocytic states, such as IL-6 and IL-4, and increased expression of microglial chemokines, such as macrophage-colony-stimulating factor and monokine induced by interferon-γ. Interestingly, cytokine effects differed as a function of stimulation frequency, revealing a range of neuroimmune effects of stimulation. To identify possible mechanisms underlying cytokine expression, we quantified the effect of the flicker on intracellular signaling pathways known to regulate cytokine levels. We found that a 40 Hz flicker upregulates phospho-signaling within the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. While cytokine expression increased after 1 h of 40 Hz flicker stimulation, protein phosphorylation in the NF-κB pathway was upregulated within minutes. Importantly, the cytokine expression profile induced by 40 Hz flicker was different from cytokine changes in response to acute neuroinflammation induced by lipopolysaccharides. These results are the first, to our knowledge, to show how visual stimulation rapidly induces critical neuroimmune signaling in healthy animals. Prior work has shown that exposing mice to lights flickering at 40 Hz induces neural spiking activity at 40 Hz (within the gamma frequency) and recruits microglia, the primary immune cells of the brain. However, the immediate effect of 40 Hz flicker on neuroimmune biochemical signaling was unknown. We found that 40 Hz flicker leads to significant increases in the expression of cytokines, key immune signals known to recruit microglia. Furthermore, we found that 40 Hz flicker rapidly changes the phosphorylation of proteins in the NF-κB and MAPK pathways, both known to regulate cytokine expression. Our findings are the first to delineate a specific rapid immune signaling response following 40 Hz visual stimulation, highlighting both the unique nature and therapeutic potential of this treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002142PMC
http://dx.doi.org/10.1523/JNEUROSCI.1511-19.2019DOI Listing

Publication Analysis

Top Keywords

cytokine expression
16
visual stimulation
12
flicker
9
neuroimmune signaling
8
acute neuroinflammation
8
neuroimmune system
8
therapeutic potential
8
prior work
8
work exposing
8
exposing mice
8

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Background: A secondary Pasteurella multocida (Pm) infection following Mycoplasma ovipneumoniae (Mo) challenge in sheep results in severe respiratory disease. Scavenger receptor A (SRA) is a key phagocytic receptor on macrophages, which facilitates microbial clearance. However, the role of sheep SRA in Mo-associated secondary Pm infection is less understood.

View Article and Find Full Text PDF

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Expression of long non-coding RNAs MALAT1, MEG3, and XIST in gestational diabetes mellitus: a cross-sectional study.

Acta Diabetol

September 2025

Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.

Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.

View Article and Find Full Text PDF

Background: Pentoxifylline (PTX), a methylxanthine derivative, has been recognized as a potential anti-inflammatory treatment across various conditions, yet its effects on inflammatory markers remain inconsistent. This systematic review/meta-analysis evaluated the impact of PTX on serum levels and gene expression of key inflammatory markers in randomized controlled trials (RCTs).

Methods: A systematic search was conducted in PubMed, Scopus, Embase, Web of Science, and ProQuest up to May 2025.

View Article and Find Full Text PDF