98%
921
2 minutes
20
Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity together with their diverse surface characteristics, these hybrids can be used in diverse biomedical/pharmaceutical applications. Herein, for instance, loading with two model drugs, salicylic acid and ibuprofen, allows controlled and sustained release as deduced from antimicrobial assays, opening a versatile path for developing other related organic-inorganic materials of potential interest in diverse application fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt03804c | DOI Listing |
Trends Biotechnol
September 2025
Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 77900, Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, Technical University of Ostrava (VSB), 17 Listopadu 2172/15, 70800 Ostrava, Poruba, Czech
Exploring mobility beyond traditional robotic systems such as walking, swimming, and jumping, flight through dispersal, gliding, or hovering remains an untapped frontier for advanced stimulus-responsive and -sensing materials. Nature-inspired engineering has been a foundational aspect of robotic innovations, and biohybrid and biomimetic flying seeds are now becoming a significant example of this concept. By mimicking the aerodynamic properties and dispersal mechanisms of natural seeds, semi- and fully artificial systems are being designed for environmental monitoring, precision agriculture, and disease management applications that require wide-area coverage.
View Article and Find Full Text PDFACS Mater Lett
September 2025
Technical University of Munich, Campus Straubing for Sustainability and Biotechnology, Chair of Biogenic Functional Materials, Schulgasse, 22, Straubing 94315, Germany.
Proteins are at the forefront of materials science, with implementations in optical, electrical, and structural materials for transformative and sustainable technologies. Within the biohybrid light-emitting diode (BioHLED) concept, replacing toxic and/or rare photon filters with classical β-barrel fluorescent proteins (FPs) that must withstand irradiation, temperature, oxidation, and dehydration stress, the question if FPs from extremophiles and/or living fossils might be better for lighting applications arises. We addressed this by introducing a thermostable prokaryotic FP, whose inherent promiscuity enables the design of tunable emitting proteins.
View Article and Find Full Text PDFSci Robot
September 2025
Nick J. Holonyak Micro and Nanotechnology Laboratory, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Neuronal control of skeletal muscle function is ubiquitous across species for locomotion and doing work. In particular, emergent behaviors of neurons in biohybrid neuromuscular systems can advance bioinspired locomotion research. Although recent studies have demonstrated that chemical or optogenetic stimulation of neurons can control muscular actuation through the neuromuscular junction (NMJ), the correlation between neuronal activities and resulting modulation in the muscle responses is less understood, hindering the engineering of high-level functional biohybrid systems.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: During radiotherapy, weak photons of Cherenkov radiation are generated, which can cause a relative increase in tumor resistance and cause errors in the radiotherapy treatment planning process. In this study, we used a photosensitive biohybrid graphene oxide nanostructure (GO-BSA-CTAB-PpIX) to maximize the absorption of Cherenkov photons in a broader range of emission wavelengths in order to create the induced photodynamic effect resulting from Cherenkov radiation.
Materials And Methods: TIn the first stage, after the synthesis and surface activation of the graphene oxide nanostructure by EDC, NHS, and albumin, its conjugation process with PpIX was performed.
ACS Appl Mater Interfaces
September 2025
Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany.
Medical devices such as vascular grafts, stents, and catheters are crucial for patient treatment but often suffer suboptimal integration with host tissues due to the nature of their surfaces. The materials commonly used, including metals and synthetic polymers, frequently lead to undesired immune responses and device failure. In this context, coating their surfaces with designer proteins has arisen as a promising strategy to improve the device's biointegration.
View Article and Find Full Text PDF