Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Hepatitis promotes the development and recurrence of hepatocellular carcinoma (HCC). Receptor tyrosine kinases (RTK) play critical roles in the development of many cancers. We explored the potential roles of RTKs in hepatitis-related liver cancers.

Experimental Design: We conducted loss-of-function screening to elucidate the roles of RTKs in the development of HCC and .

Results: Many RTKs were coexpressed in HCC and were involved in tumor development and growth. Of these, TYRO3 promoted tumor growth and was clinically associated with hepatitis activity and poor prognosis. In mice, chemical-induced hepatitis transcriptionally activated Tyro3 expression via IL-6/IL6R-STAT3 signaling. Moreover, hepatitis-associated apoptotic cells facilitated the presentation of GAS6, a TYRO3 ligand, to further activate TYRO3-mediated signaling. Furthermore, TYRO3 activation elicited intracellular SRC- and STAT3 signaling. In mice, hepatitis and Tyro3 synergistically promoted HCC development. Silencing TYRO3 expression or inhibiting its kinase activity suppressed xenograft HCC growth in nude mice.

Conclusions: Many RTKs are simultaneously involved in HCC development. Hepatitis exerts dual effects on the activation of TYRO3-mediated signaling in HCC cells, which further elicits the "TYRO3-STAT3-TYRO3" signaling loop to facilitate tumor growth. Our findings unveil a previously unrecognized link between RTKs and hepatitis-associated HCC and suggest TYRO3 as a marker and therapeutic target for the HCCs with higher hepatitis activity.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-3531DOI Listing

Publication Analysis

Top Keywords

therapeutic target
8
hcc
8
roles rtks
8
tumor growth
8
hepatitis activity
8
tyro3 expression
8
tyro3-mediated signaling
8
hcc development
8
tyro3
7
signaling
6

Similar Publications

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

The rapid increase in multidrug-resistant (MDR) bacteria and biofilm-associated infections has intensified the global need for innovative antimicrobial strategies. Phage therapy offers promising precision against MDR pathogens by utilizing the natural ability of phages to specifically infect and lyse bacteria. However, their clinical application is hampered by challenges such as narrow host range, immune clearance and limited efficacy within biofilms.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.

View Article and Find Full Text PDF

New strategies to enhance the efficacy of PD-1/PD-L1 inhibitors in treating microsatellite stable colorectal cancer.

Future Oncol

September 2025

Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.

Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.

View Article and Find Full Text PDF