Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ethanol tolerance, a polygenic trait of the yeast , is the primary factor determining industrial bioethanol productivity. Until now, genomic elements affecting ethanol tolerance have been mapped only at low resolution, hindering their identification. Here, we explore the genetic architecture of ethanol tolerance, in the F6 generation of an Advanced Intercrossed Line (AIL) mapping population between two phylogenetically distinct, but phenotypically similar, strains (a common laboratory strain and a wild strain isolated from nature). Under ethanol stress, 51 quantitative trait loci (QTLs) affecting growth and 96 QTLs affecting survival, most of them novel, were identified, with high resolution, in some cases to single genes, using a High-Resolution Mapping Package of methodologies that provided high power and high resolution. We confirmed our results experimentally by showing the effects of the novel mapped genes: , , and YJR154W. The mapped QTLs explained 34% of phenotypic variation for growth and 72% for survival. High statistical power provided by our analysis allowed detection of many loci with small, but mappable effects, uncovering a novel "quasi-infinitesimal" genetic architecture. These results are striking demonstration of tremendous amounts of hidden genetic variation exposed in crosses between phylogenetically separated strains with similar phenotypes; as opposed to the more common design where strains with distinct phenotypes are crossed. Our findings suggest that ethanol tolerance is under natural evolutionary fitness-selection for an optimum phenotype that would tend to eliminate alleles of large effect. The study provides a platform for development of superior ethanol-tolerant strains using genome editing or selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879558PMC
http://dx.doi.org/10.3389/fgene.2019.00998DOI Listing

Publication Analysis

Top Keywords

ethanol tolerance
20
genetic variation
8
genetic architecture
8
high resolution
8
tolerance
5
high
5
ethanol
5
mapping ethanol
4
tolerance budding
4
budding yeast
4

Similar Publications

Effects of ethanolic extracts of Akhuni, an ethnic food of Northeast India, on glucose tolerance, lipid profile and antihyperglycemic activities and its pharmacokinetic studies.

Food Res Int

November 2025

Centre for Pre-clinical Studies, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

This is the first report on the functional potential of Akhuni, an ethnic food of Northeast India, against diabetes. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in the cuisine of Northeast India. Treatment with ethanolic extract of Akhuni (AKET) for 8 weeks decreased glucose levels in the blood, increased body mass and enhanced the ability to tolerate glucose dose-dependently in the streptozotocin-induced diabetic mice in comparison with the group of diabetic control mice (DBC).

View Article and Find Full Text PDF

The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.

View Article and Find Full Text PDF

PdMoW trimetallene facilitates the electrooxidation of ethanol in alkaline electrolyte with high efficiency and C2 selectivity.

J Colloid Interface Sci

September 2025

Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:

Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.

View Article and Find Full Text PDF

Multiple Lignocellulosic Inhibitor-Tolerant Strains Developed by Evolutionary Engineering and CRISPR/Cas9 Gene Editing Technology.

J Agric Food Chem

September 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life Science and Health Engineering, Hubei University of Technology, Wuhan 430068, P. R. China.

Through evolutionary engineering strategies, scientists have successfully cultivated multiple strains of with enhanced tolerance, demonstrating significant potential in improving resistance. In this study, was continuously cultured for 80 days in a medium containing lignocellulosic inhibitors (furfural, acetic acid, and vanillin). The evolved strain, , exhibited 12 h reduction in lag phase under multiple stress conditions and 17% increase in the ethanol conversion rate.

View Article and Find Full Text PDF

Yeasts in traditional Baijiu fermentation: diversity, functions, microbial interactions and applications.

Front Microbiol

August 2025

National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.

Baijiu is a traditional distilled liquor unique to China. Its distinctive flavor is shaped by the synergistic activity of complex microbial communities, among which yeasts play a central role in sugar metabolism, ethanol fermentation, and aroma synthesis. In recent years, the advancement of isolation and cultivation techniques, high-throughput sequencing, metagenomics, and multi-omics technologies has deepened our understanding of yeast community compositions, succession patterns, and functional characteristics during Baijiu brewing.

View Article and Find Full Text PDF