Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wastewater reuse risk and membrane fouling are two concerns in ultrafiltration (UF) of secondary effluent (SE) for wastewater reuse. In this work, several wastewater reuse risk issues, such as dissolved effluent organic matters (dEfOM), organic micro-pollutants (OMPs) and bio-toxicity of SE, as well as membrane fouling were comprehensively investigated when ozonation, UV/HO and UV/persulfate (UV/PS) were used as the pre-treatments for UF process. To be specific, individual UF could remove DOC and UV by only 7.5% and 19.8%, respectively, however, humics were largely degraded during the pre-oxidation processes revealed by molecular weight and fluorescence analysis. UF and ozonation showed limited removal of OMPs, however, UV/HO and UV/PS dramatically degraded all the OMPs by more than 80%. Genotoxicity were not detected after the oxidation treatment. Membrane fouling may result from the collaborative effect of organic components, such as humic and protein like substances. Fourier transform infrared spectra of the fouled membranes showed that aromatic CC group and polysaccharides group in dEfOM were largely reduced after the oxidation pre-treatments, resulting in the improved membrane flux sustaining. Increased roughness of the membranes in the combined process supported that the less organics content after the oxidation pre-treatment contributed to improve the performance of the UF process. For the excellent organics degradation in UV/PS pre-treatment process, membrane fouling of subsequent UF process showed maximum mitigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125449DOI Listing

Publication Analysis

Top Keywords

membrane fouling
20
wastewater reuse
16
oxidation pre-treatment
8
pre-treatment process
8
reuse risk
8
process
6
membrane
6
fouling
5
comparison ozonation
4
ozonation based
4

Similar Publications

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

Functionalized Dynamic Membrane for Wastewater Treatment.

Environ Sci Technol

September 2025

National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.

Traditional dynamic membranes (DMs) are plagued by membrane fouling and low performance during long-term operation. In recent years, researchers have developed various functionalized dynamic membranes (FDMs) derived from DMs, employing different functional materials to provide an economically viable and promising solution for wastewater treatment. Nevertheless, there remains a gap in the comprehensive understanding of FDMs and the challenges encountered in their application.

View Article and Find Full Text PDF

Traditional methods for fruit juice preservation use high temperatures, which degrade beneficial compounds like vitamins and antioxidants. Membrane filtration provides a gentler alternative, preserving nutrients through mild operating temperatures. This study assessed the temperature and pressure influence on watermelon juice microfiltration, focusing on permeated flow, lycopene, sugars, phenolic compounds, and flavonoids.

View Article and Find Full Text PDF

Response surface optimization of anaerobic self-forming dynamic membrane (AnSFDM) formation: Dominant parameter, interaction relationship and experimental evidence.

J Environ Manage

September 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China. Electronic address:

Anaerobic self-forming dynamic membrane (AnSFDM) bioreactors have attracted increasing attention owing to their cost-effectiveness and lower carbon footprint. AnSFDM formation is the initial process of their operation and of pivotal importance for determining the basic characteristics of AnSFDMs. Nevertheless, the effect of operational parameters on the AnSFDM formation process has not been studied in a systematical and quantitative manner.

View Article and Find Full Text PDF

Imaging techniques are important for biofilm studies. Biofilm samples should ideally be visualised with minimal sample preparation so as not to alter their original structure. However, this can be challenging and resource-intensive in most cases.

View Article and Find Full Text PDF