98%
921
2 minutes
20
Boron doped ordered mesoporous carbon (BMC) was prepared to improve the adsorption of Pb(II). The effects of several parameters such as contact time, pH, and ionic strength on the adsorption by both pristine ordered mesoporous carbon (OMC) and BMC were investigated. Thermodynamic, sorption isotherm and adsorption kinetics models were used to study the adsorption mechanisms by each of the adsorbents. Based on intraparticle diffusion model, the adsorption process by the two adsorbents mainly involved the quick liquid-film diffusion stage and slow pore diffusion portion, and fitting experimental data with Temkin model indicates that the adsorption process by both of the adsorbents involve physisorption and chemisorption. Based on Langmuir model, the estimated maximum adsorption capacity for BMC was about 1.3 times higher than the pristine OMC. Moreover, BMC retained good adsorption performance in tap and lake water, and could be regenerated effectively and recycled using EDTA. The results suggested that BMC, with enhanced adsorption performance compared with OMC, could be considered as very effective and promising materials for Pb (II) removal from wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134918 | DOI Listing |
Small
September 2025
School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, South Korea.
All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Background: The separation of structural isomers is always a challenging task for liquid chromatography because of their similar physicochemical property. Research has found that materials with regular microporous structures exhibit excellent isomer separation performance. However, as the most easily available chromatographic material, silica stationary phases with regular and small mesopore structure have not yet been prepared, and it remains to be confirmed whether narrow pores in silica materials have the enhancing effect on shape selectivity in the separation of structural isomers.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India. Electronic address:
Multifunctional polymers derived from waste biomass are under intense global investigation for wastewater remediation owing to their environmental advantages. Therefore, this study reports the synthesis of a novel polyamidoxime-co-polyethyleneimine multifunctional cellulose, which was used as an adsorbent for the removal of acidic dye pollutants. Morphological, structural, and surface studies were performed using several techniques.
View Article and Find Full Text PDFSmall
September 2025
Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, Częstochowa, 42-200, Poland.
Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.
View Article and Find Full Text PDF