98%
921
2 minutes
20
Vibrio parahaemolyticus (V. parahaemolyticus) is a naturallyoccurring bacterium found in estuaries, such as the Chesapeake Bay (USA), that can cause vibriosis, a food - and waterborne illness, in humans. Tracking the spatial and temporal distribution of V. parahaemolyticus in the Chesapeake Bay, which varies in part due to water temperature, salinity, and other environmental variables, can help identify areas and time periods of high risk. These observations can support interventions used to reduce the burden of vibriosis. Spatial and spatiotemporal clusters of high V. parahaemolyticus abundance were identified among surface water samples in the Chesapeake Bay between 2007 and 2010. While Euclidean distances between geographic points in spatial analyses are often used for cluster detection, non-Euclidean distances should be considered for cluster detection due to the complex nature of the Chesapeake Bay shoreline. Comparison of both methods consistently showed the non-Euclidean cluster detection providing unique and more reasonable clusters than the Euclidean approach. Residuals from univariate and multivariate models were used to identify how clusters changed after controlling for environmental variables. Most clusters tended to decrease in space, time, or significance after adjustment, suggesting these covariates contributed to the original formation of the clusters and as such are useful observation tools for vibriosis risk managers. Clusters that remained after adjustment suggest areas for further study and intervention. These findings reinforce the importance of using non-Euclidean distances when tracking the spatiotemporal variation of V. parahaemolyticus as well as the benefits of cluster detection methods for V. parahaemolyticus risk management in estuaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4081/gh.2019.783 | DOI Listing |
Water Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFThe status of co-infection with porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and type 2 (PRRSV-2) in Japan is poorly understood. A case of such co-infection was identified on a PRRSV-1 non-vaccinated farm in Kagoshima prefecture. Both PRRSV-1 and PRRSV-2 genomes were simultaneously detected in pig samples by RT-PCR, and molecular analysis confirmed PRRSV-1/PRRSV-2 co-infection in individual piglets.
View Article and Find Full Text PDFInsect Biochem Mol Biol
September 2025
Laboratory of Molecular Entomology and Bee Pathology (L-MEB), Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium. Electronic address:
This study maps the surfaceome of Apis mellifera hemocytes, the protagonist cells in honey bee cellular immunity. The surfaceome, proteins expressed at the cell surface, is crucial as it determines how cells interact with their microenvironment. Through a combination of proteomic and transcriptomic analyses, 1142 genes encoding cell surface proteins were identified, revealing a high level of diversity.
View Article and Find Full Text PDFBiophys Chem
September 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.
View Article and Find Full Text PDFPrev Vet Med
September 2025
World Organisation for Animal Health (WOAH) Sub-Regional Representation for South East Asia, Bangkok 10400, Thailand.
Foot and mouth disease (FMD) remains endemic in several countries across Southeast Asia, China, and Mongolia (SEACFMD region), posing an ongoing threat to livestock and trade. This study aimed to investigate the epidemiological characteristics and analyze the spatial and temporal distribution of FMD outbreaks reported across the SEACFMD region. FMD outbreak and virus lineage data from 2015 to 2023 were utilized.
View Article and Find Full Text PDF