Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent studies have shown that microRNAs (miRNAs) play a role as regulators of neurodevelopment by modulating gene expression. Altered miRNA expression has been reported in various psychiatric disorders, including schizophrenia. However, the changes in the miRNA expression profile that occur during the initial stage of schizophrenia have not been fully investigated. To explore the global alterations in miRNA expression profiles that may be associated with the onset of schizophrenia, we first profiled miRNA expression in plasma from 17 patients with first-episode schizophrenia and 17 healthy controls using microarray analysis. Among the miRNAs that showed robust changes, the elevated expression of has-miR-223-3p (miR-223) was validated via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using another independent sample set of 21 schizophrenia patients and 21 controls. To identify the putative targets of miR-223, we conducted a genome-wide gene expression analysis in neuronally differentiated SK-N-SH cells with stable miR-223 overexpression and an in silico analysis. We found that the mRNA expression levels of four genes related to the cytoskeleton or cell migration were significantly downregulated in miR-223-overexpressing cells, possibly due to interactions with miR-223. The in silico analysis suggested the presence of miR-223 target sites in these four genes. Lastly, a luciferase assay confirmed that miR-223 directly interacted with the 3' untranslated regions (UTRs) of all four genes. Our results reveal an increase in miR-223 in plasma during both the first episode and the later stage of schizophrenia, which may affect the expression of cell migration-related genes targeted by miR-223.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848172PMC
http://dx.doi.org/10.1038/s41398-019-0609-0DOI Listing

Publication Analysis

Top Keywords

mirna expression
16
expression
9
plasma patients
8
patients first-episode
8
first-episode schizophrenia
8
migration-related genes
8
gene expression
8
stage schizophrenia
8
mir-223
8
silico analysis
8

Similar Publications

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF

Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.

Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.

View Article and Find Full Text PDF

Objectives: To investigate the role of circular RNA circ_0000437 in regulating biological behaviors of breast cancer cells and the molecular mechanism.

Methods: Breast cancer MCF-7 and MDA-MB-231 cells were transfected with sh-circ_0000437, mimics, inhibitor, si-CTPS1, or their respective negative controls. qRT-PCR was used to detect the expression levels of circ_0000437, let-7b-5p, CTPS1, Notch1, Hes1, and Numb in breast cancer cell lines and tissues.

View Article and Find Full Text PDF

Objectives: To investigate the effect of cardiomyocytes-derived exosomes on lipopolysaccharide (LPS)-induced cardiomyocyte injury and its mechanism.

Methods: Exosomes isolated from rat cardiomyocytes with or without LPS treatment were co-cultured with rat lymphocytes. The lymphocytes with or without exosome treatment were co-cultured with LPS-induced rat cardiomyocytes for 48 h.

View Article and Find Full Text PDF

The Nucleolus and Its Associated Pathologies.

WIREs Mech Dis

September 2025

GIMUNICAH, Faculty of Medicine, Pontificia Universidad Católica de Honduras, San Pedro Sula, Honduras.

The nucleolus, traditionally known for its role in ribosome biogenesis, is now recognized for its broader functions, including cellular stress adaptation and its involvement in various pathological processes, such as ribosomal alterations, viral infections, autoimmune disorders, and age-related diseases. Disruptions in nucleolar function can impair protein synthesis, cellular homeostasis, and immune responses, leading to multisystem disorders and increased susceptibility to neoplasms. This review classifies nucleolus-associated diseases into seven categories: deficiencies in protein synthesis, ribosomal and non-ribosomal alterations, cancer and nucleolar alterations, diseases related to aging and cellular stress, autoimmune diseases, and viral diseases.

View Article and Find Full Text PDF