Hybridization of Particulate Methane Monooxygenase by Methanobactin-Modified AuNPs.

Molecules

State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Particulate methane monooxygenase (pMMO) is a characteristic membrane-bound metalloenzyme of methane-oxidizing bacteria that can catalyze the bioconversion of methane to methanol. However, in order to achieve pMMO-based continuous methane-to-methanol bioconversion, the problems of reducing power in vitro regeneration and pMMO stability need to be overcome. Methanobactin (Mb) is a small copper-chelating molecule that functions not only as electron carrier for pMMO catalysis and pMMO protector against oxygen radicals, but also as an agent for copper acquisition and uptake. In order to improve the activity and stability of pMMO, methanobactin-Cu (Mb-Cu)-modified gold nanoparticle (AuNP)-pMMO nanobiohybrids were straightforwardly synthesized via in situ reduction of HAuCl to AuNPs in a membrane fraction before further association with Mb-Cu. Mb-Cu modification can greatly improve the activity and stability of pMMO in the AuNP-pMMO nanobiohybrids. It is shown that the Mb-Cu-modified AuNP-pMMO nanobiohybrids can persistently catalyze the conversion of methane to methanol with hydroquinone as electron donor. The artificial heterogeneous nanobiohybrids exhibited excellent reusability and reproducibility in three cycles of catalysis, and they provide a model for achieving hydroquinone-driven conversion of methane to methanol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891627PMC
http://dx.doi.org/10.3390/molecules24224027DOI Listing

Publication Analysis

Top Keywords

methane methanol
12
aunp-pmmo nanobiohybrids
12
particulate methane
8
methane monooxygenase
8
improve activity
8
activity stability
8
stability pmmo
8
conversion methane
8
pmmo
6
methane
5

Similar Publications

Upgrading methane to value-added chemicals is significant but still challenging. Well-designed catalysts are required to activate methane. Extensive efforts have been dedicated to the catalytic conversion of methane over transition-metal-containing catalysts.

View Article and Find Full Text PDF

Methane is a notorious and potent greenhouse gas with a greenhouse effect potential 25 times higher than carbon dioxide. Current technologies for methane are limited by high energy demands, CO emissions and by-product pollution, and costly catalysts. Hence, it is urgent to seek clean processing technologies that can utilize its dual properties as an energy source and raw chemical feedstock to unlock its full potential and contribute to environmental remediation.

View Article and Find Full Text PDF

Accurate prediction of free energy changes (Δ) for the vast network of reaction intermediates in the electrocatalytic CO reduction reaction (CORR) is essential for evaluating catalytic performance. We combined density functional theory (DFT) and machine learning (ML) to screen 25 single-atom catalysts (SACs) on defective γ-GeSe monolayers for CO reduction to methanol, methane, and formic acid. Among nine ML models evaluated with 14 features, the XGBoost performed best (R = 0.

View Article and Find Full Text PDF

Binary Rhodium Atom Catalyst for Selective Catalytic Conversion of Methane to Methanol.

ACS Nano

September 2025

National & Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, PR China.

Using monometallic catalysts to selectively catalyze methane to methanol while suppressing the formation of liquid-phase overoxide products is beneficial for industrial applications. However, the balance between yield and selectivity over monometallic active sites remains challenging. This work proposes a strategy anchoring binary rhodium species to influence their surface dispersion properties.

View Article and Find Full Text PDF

Wetlands are a major source of methane emissions and contribute to the observed increase in atmospheric methane over the last 20 years. Methane production in wetlands is the final step of carbon decomposition performed by anaerobic archaea. Although hydrogen/carbon dioxide and acetate are the substrates most often attributed to methanogenesis, other substrates - such as methylated compounds - may additionally play important roles in driving methane production in wetland systems.

View Article and Find Full Text PDF