Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics.

Curr Opin Insect Sci

Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cois.2019.09.003DOI Listing

Publication Analysis

Top Keywords

adaptation abiotic
4
abiotic environment
4
environment insects
4
insects influence
4
influence variability
4
variability ecophysiology
4
ecophysiology evolutionary
4
evolutionary genomics
4
genomics advances
4
advances tools
4

Similar Publications

Abiotic stresses severely threaten global food security, underscoring the need for resilient crop varieties. We identified OsSPT38, a previously uncharacterized SUMO E3 ligase in rice, and discovered a rare gain-of-function mutation (Gly212Asp) that enhances both stress resilience and yield. This phenotype was validated in 18 additional independent mutants and by base editing in the elite indica cultivar Huanghuazhan.

View Article and Find Full Text PDF

Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies.

View Article and Find Full Text PDF

Yield potential and stress adaptation are not mutually exclusive: wheat as a case study.

Trends Plant Sci

September 2025

Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; AGROTECNIO (Center of Research in Agrotechnology), Lleida, Spain. Electronic address:

Wheat is a primary staple crop worldwide, grown in a wide range of environments, leading to significant yield variation. Improving wheat yield potential and resilience against abiotic and biotic stresses are critical to food security. A perennial debate is to breed for yield potential or for adaptation to specific conditions.

View Article and Find Full Text PDF

Premise: Flower color polymorphism (FCP) is thought to be driven by multiple selection agents. Although widely associated with visual attraction of multiple pollinators, FCP is also often correlated with abiotic factors. We explored the links between abiotic conditions, flowering phenology, and FCP in the winter-flowering geophyte Anemone coronaria L.

View Article and Find Full Text PDF

The GmPRL1b-GmST2-GmAOC3/4 Module Confers Salt Tolerance and Botrytis cinerea Resistance by Inducing Jasmonic Acid Biosynthesis in Soybean.

Plant Biotechnol J

September 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

Abiotic and biotic stress significantly limit crop yields. However, most stress-tolerance genes identified to date provide resistance to either biotic or abiotic stress and inhibit normal plant growth, limiting their application in breeding. We identified the soybean (Glycine max) NAC transcription factor gene GmST2, which is induced by salt and Botrytis cinerea stresses.

View Article and Find Full Text PDF