A cross-interface model for thermal transport across the interface between overlapped nanoribbons.

Phys Chem Chem Phys

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of low-dimensional materials for heat dissipation requires a comprehensive understanding of thermal transport at cross-interfaces, which widely exist in various composite materials and electronic devices. In this work, an analytical model is proposed, named as the cross-interface model (CIM), to accurately reveal the essential mechanism of the two-dimensional thermal transport at cross-interfaces. The applicability of CIM is validated through a comparison of the analytical results with molecular dynamics simulations for a typical cross-interface between two overlapped boron nitride nanoribbons. Besides, it is found that both the thermal resistances and the factor, η, has an important influence on the thermal transport. These investigations would deepen the understanding of the thermal transport at cross-interfaces and also facilitate the application of low-dimensional materials in thermal management.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp04694aDOI Listing

Publication Analysis

Top Keywords

thermal transport
20
transport cross-interfaces
12
cross-interface model
8
application low-dimensional
8
low-dimensional materials
8
understanding thermal
8
thermal
7
transport
5
model thermal
4
transport interface
4

Similar Publications

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Thermal Cross-linked Electron Transport Polymers for Suppressing Efficiency Roll-off in Green Solution-Processed Inverted OLEDs.

ACS Appl Mater Interfaces

September 2025

Organic Electronic Materials Laboratory, Department of Information Display, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.

Solution-processed phosphorescent inverted organic light-emitting diodes (s-IOLEDs) have garnered significant attention due to their excellent stability and high performance. However, frequently used inorganic electron transport layers usually cause exciton dissociation at the emitting layer interface, leading to low device efficiency and severe efficiency roll-off. In this work, we designed a cross-linkable triazine-grafted electron transport copolymer (PPDPT--PBCB) with a high triplet energy (3.

View Article and Find Full Text PDF

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF

Thermal conductivity of selenium crystals based on machine learning potentials.

Phys Chem Chem Phys

September 2025

State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

Selenium, as an important semiconductor material, exhibits significant potential for understanding lattice dynamics and thermoelectric applications through its thermal transport properties. Conventional empirical potentials are often unable to accurately describe the phonon transport properties of selenium crystals, which limits in-depth understanding of their thermal conduction mechanisms. To address this issue, this study developed a high-precision machine learning potential (MLP), with training datasets generated molecular dynamics simulations.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF