Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intravenous administration of a prodrug, chloramphenicol succinate (CLsu), is ineffective. Recently, we have shown that conjugation of diglycine of CLsu (CLsuGG) not only increases the antibiotic efficacy against but also reduces adverse drug effects against bone marrow stromal cells. Here, we report the synthesis of structural analogues of CLsuGG and their activities against . These analogues reveal several trends: (i) except the water-insoluble analogues, the attachment of peptides to CLsu enhances the efficacy of the prodrugs; (ii) negative charges, high steric hindrance in the side chains, or a rigid diester decreases the activities of prodrugs in comparison to CLsuGG; (iii) dipeptides apparently increase the efficacy of the prodrugs most effectively; and so forth. This work suggests that conjugating peptides to CLsu effectively modulates the properties of prodrugs. The structure-activity relationship of these new conjugates may provide useful insights for expanding the pool of antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902879PMC
http://dx.doi.org/10.1021/acs.jmedchem.9b01210DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
8
peptides clsu
8
efficacy prodrugs
8
relationship peptide-conjugated
4
peptide-conjugated chloramphenicol
4
chloramphenicol inhibiting
4
inhibiting intravenous
4
intravenous administration
4
administration prodrug
4
prodrug chloramphenicol
4

Similar Publications

Soybean saponins, a class of intricate oleanane-type triterpenoids predominantly present in soybeans, exhibit diverse biological activities. This overview summarizes recent progress in elucidating the biological roles of soybean saponins and their glycosides, encompassing anti-inflammatory, antimutagenic, anticancer, and antimicrobial effects, viewed through a tectonic lens. Additionally, it explores modification methodologies encompassing physical, chemical, and biological strategies.

View Article and Find Full Text PDF

Formic acid (FA) has attracted significant interest as a renewable liquid-phase hydrogen carrier. Hydrogen generation from FA decomposition is essential for the development of hydrogen economy. Designing highly efficient catalysts with different coordination environments for FA dehydrogenation is crucial for fuel-cell applications.

View Article and Find Full Text PDF

Design, Synthesis, and Biological Evaluation of 8-Phenyl-THIQ as Antidepressive Agents.

Drug Dev Res

September 2025

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China.

The structural modification and derivatization of natural products represent an essential pathway for pharmaceutical innovation in the management of depression. The 8-phenyl tetrahydroisoquinoline, as a parent core, was obtained from magnoflorine by a structural simplification strategy. The present report details the synthesis and antidepressant activity studies of 8-phenyl-THIQ analogs.

View Article and Find Full Text PDF

The overexpression of P-glycoprotein (P-gp) has been recognized as a pivotal factor contributing to the emergence of multidrug resistance (MDR), a phenomenon that frequently limits the efficacy of chemotherapy and profoundly impacts patient prognosis. Consequently, the inhibition of P-gp's efflux function has become a critical therapeutic strategy for overcoming drug resistance and enhancing chemotherapeutic efficacy. In recent years, the development of P-gp inhibitors has garnered significant attention, particularly with the frequent incorporation of heterocyclic derivatives, which exhibit exceptional biological activity and favorable chemical properties, into drug design.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF