Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among 23 isolates of cutinase-producing fungi from Thailand, one strain of PBURU-T5 exhibited the greatest cutinase activity (3.36 ± 0.12 U ml) against -nitrophenyl butyrate. This strain was found to produce an inducible cutinase when cultivated in the liquid mineral medium containing cutin from papaya peel as the sole carbon source. By optimizing the production condition based on the central composite experimental design, the maximal cutinase activity up to 4.82 ± 0.18 U ml was attained under the condition: 0.4% (w/v) papaya cutin as the carbon source, 0.3% (w/v) peptone as the nitrogen source, incubation temperature at 30 °C for 4 days, and initial pH 7.0. The crude enzyme was optimally active at 35 °C and pH 9.0 which was suitable for textile industrial application. The treatment with the crude PBURU-T5 cutinase (100 U g dry weight of fabric) could enhance the wetting time, water adsorption and moisture regain of polyethylene terephthalate fabric up to 1.9-, 1.2- and 1.3-fold, respectively, comparing with the conventional 1M NaOH treatment. The increment of these fabric properties by enzymatic treatment could facilitate the dyeing process and enhance the fabric softness. Thus, PBURU-T5 is the promising source of cutinase for the modification of the PET fabric surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785599PMC
http://dx.doi.org/10.1007/s13205-019-1931-1DOI Listing

Publication Analysis

Top Keywords

polyethylene terephthalate
8
terephthalate fabric
8
cutinase activity
8
carbon source
8
fabric
6
cutinase
5
production cutinase
4
cutinase application
4
application hydrophilicity
4
hydrophilicity improvement
4

Similar Publications

Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.

View Article and Find Full Text PDF

Photodegradation of PET plastics produces persistent compounds that accumulate in sediments.

Mar Pollut Bull

September 2025

Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Mass Spectrometry Based Converging Research Institute, Daegu 41566, Republic of Korea. Electronic address:

Polyethylene terephthalate (PET) is one of the most widely used plastics, particularly in packaging and textiles. Although PET is widely used in consumer products, only 10-28 % is recycled. Most PET waste is not properly managed.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) microplastics (MPs) have emerged as a significant environmental contaminant with potential adverse effects on human health, particularly in cancer biology. This study investigates the molecular and immunological mechanisms underlying the influence of PET-MPs on breast cancer (BC) progression. Employing an integrative approach that combines bioinformatics analysis of public cancer databases (TCGA), molecular docking simulations, and in vitro experiments, we identified four immune-related genes-CCL19, KLRB1, CD40LG, and IGLL5-that are potentially modulated by PET-MPs.

View Article and Find Full Text PDF

Single Te Nanoribbon for Disrupting Conventional Sensitivity-Power Limits of Flexible Strain Sensors.

Small

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.

Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is a ubiquitous polymer with a lack of viable waste management solutions besides mechanical recycling, incineration, and landfilling. Herein, we demonstrate a chemical upcycling of PET waste into materials for CO capture via aminolysis. The aminolysis reaction products-a bis-aminoamide (BAETA) and oligomers-exhibit high CO capture capacity up to 3.

View Article and Find Full Text PDF