Transcription Factor Is Involved in Salt Stress Response in Diploid Cotton Species ( L.).

Int J Mol Sci

Key Laboratory of Cotton and Canola Research at the Lower Reach of the Yangtze River Plain, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cotton is one of the most economically important crops in the world, and it is exposed to various abiotic stresses during its lifecycle, especially salt stress. However, the molecular mechanisms underlying cotton tolerance to salt stress are still not fully understood due to the complex nature of salt response. Therefore, identification of salt stress tolerance-related functional genes will help us understand key components involved in stress response and provide valuable genes for improving salt stress tolerance via genetic engineering in cotton. In the present study, virus-induced gene silencing of in cotton showed enhanced salt sensitivity compared to wild-type plants under salt stress. Overexpression of in positively regulated salt tolerance at the stages of seed germination and vegetative growth. Additionally, -overexpressing plants exhibited higher activities of superoxide dismutase (SOD) and peroxidase (POD) under salt stress. The transcriptome sequencing analysis of transgenic plants and wild-type plants revealed that there was enriched coexpression of genes involved in reactive oxygen species (ROS) scavenging (including glutamine S-transferases (GSTs) and SODs) and altered response to jasmonic acid and salicylic acid in the -OE lines. is involved in salt stress response by the jasmonic acid- or salicylic acid-mediated signaling pathway based on overexpression of in and virus-induced gene silencing of in cotton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6862181PMC
http://dx.doi.org/10.3390/ijms20215244DOI Listing

Publication Analysis

Top Keywords

salt stress
32
stress response
12
salt
11
stress
9
involved salt
8
virus-induced gene
8
gene silencing
8
silencing cotton
8
wild-type plants
8
response jasmonic
8

Similar Publications

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.

View Article and Find Full Text PDF

We identified, isolated, and functionally characterized a cyclin-dependent kinase (CDK), PiPho85, from Piriformospora indica. The identified PiPho85 contains TY, PSTAIRE, protein kinase domain, and an ATP binding site which is highly conserved among the Pho85/CDK5 family protein specific for Saccharomyces cerevisiae. In a S.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF