Homogeneous Electrochemiluminescence Biosensor for the Detection of RNase A Activity and Its Inhibitor.

Anal Chem

MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University, Fuzhou , Fujian 350116 , China.

Published: November 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ribonuclease A (RNase A) is increasingly considered as a biomarker for tumor diagnosis, and it is of great significance to develop an ultrasensitive, cost-effective assay for RNase A detection. Electrochemiluminescence (ECL) technology has distinctive advantages in the development of biosensors for diverse targets. However, most of the ECL biosensors require the complex process of electrode modification, which is laborious and time consuming. In this work, an immobilization-free homogeneous ECL assay was developed for the highly sensitive detection of RNase A activity for the first time. On the basis of the fact that RNase A can specifically hydrolyze RNA at the site of ribonucleotide uracil (rU), a rU-containing chimeric DNA probe is designed and labeled with Ru(bpy) (act as ECL indicator). The chimeric DNA probe hardly diffuses to the surface of negatively charged indium tin oxide (ITO) electrode due to the strong electrostatic repulsion between the negatively charged DNA and ITO electrode, resulting in a weak ECL signal detected. When the RNase A is present, the chimeric DNA probe is hydrolyzed into small fragments, which contains little negative charge and can diffuse easily to the ITO electrode surface due to the decreased electrostatic repulsion. In this case, an enhanced ECL signal can be detected. Under the optimal conditions, there is a linear relationship between the ECL signal and the concentration of RNase A in the range of 0.001-0.10 ng/mL, and the detection limit is 0.2 pg/mL. In addition, the proposed ECL sensing system is also applied to detect the RNase A inhibitor, taking As as an example. The proposed homogeneous ECL sensing system provides a new approach for the highly sensitive and convenient detection of RNase A as well as other ribonucleases only by redesigning a responding chimeric DNA probe.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b04194DOI Listing

Publication Analysis

Top Keywords

chimeric dna
16
dna probe
16
detection rnase
12
ito electrode
12
ecl signal
12
rnase
9
ecl
9
rnase activity
8
homogeneous ecl
8
highly sensitive
8

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

Goeldi's monkey (Callimico goeldii, the lone species in this genus) shows an array of characteristics that are typical for both New World primate families, the Cebidae and the Callitrichidae, and as such their taxonomic classification has remained in question. Based on DNA, the genus Callimico is regarded as a member of the monophyletic group of clawed New World monkeys (Callitrichidae). Callitrichids, as a rule, give birth to twins, which are blood chimeras due to placental blood vessel anastomoses.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF

46,XY/46,XY Chimerism: Prenatal Presentation and Postnatal Outcome.

Mol Genet Genomic Med

September 2025

Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada.

Background: Human chimerism is rare, and most prevalent with discordant chromosomal sex. We report a male 46,XY/46,XY chimera, born through a spontaneously conceived pregnancy to a healthy 32-year-old G1P0 Indian, African, and Scottish female and her 34-year-old healthy Chinese partner. The prenatal presentation and postnatal outcomes are described.

View Article and Find Full Text PDF

The persistent residual tumor cells that survive after chemotherapy are a major cause of treatment failure, but their survival mechanisms remain largely elusive. These cancer cells are typically characterized by a quiescent state with suppressed activity of MYC and MTOR. We observed that the MYC-suppressed persistent triple-negative breast cancer (TNBC) cells are metabolically flexible and can upregulate mitochondrial oxidative phosphorylation (OXPHOS) genes and respiratory function ("OXPHOS-high" cell state) in response to DNA-damaging anthracyclines such as doxorubicin, but not to taxanes.

View Article and Find Full Text PDF