Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conjugated coordination polymers have become an emerging category of redox-active materials. Although recent studies heavily focus on the tailoring of metal centers in the complexes to achieve stable electrochemical performance, the effect on different substitutions of the bridging bonds has rarely been studied. An innovative tailoring strategy is presented toward the enhancement of the capacity storage and the stability of metal-organic conjugated coordination polymers. Two nanostructured d-π conjugated compounds, Ni[C H (NH) ] (Ni-NH) and Ni[C H (NH) S ] (Ni-S), are evaluated and demonstrated to exhibit hybrid electrochemical processes. In particular, Ni-S delivers a high reversible capacity of 1164 mAh g , an ultralong stability up to 1500 cycles, and a fully recharge ability in 67 s. This tailoring strategy provides a guideline to design future effective conjugated coordination-polymer-based electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201903188DOI Listing

Publication Analysis

Top Keywords

conjugated coordination
12
coordination polymers
12
metal-organic conjugated
8
tailoring strategy
8
conjugated
5
nanostructured metal-organic
4
polymers ligand
4
tailoring
4
ligand tailoring
4
tailoring superior
4

Similar Publications

Dual-functional phthalamide modulation of aging-resistant PbI for efficient perovskite solar cells.

J Colloid Interface Sci

September 2025

School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China. Electronic address:

The sequential preparation of perovskite solar cells (PSCs) has received widespread concern for its use in large-scale perovskite modules and perovskite/silicon tandem solar cells. However, the instability of the PbI precursor solution and the incomplete reaction of ammonium salts hinder the industrialization of PSCs. Here, by introducing phthalamide (PA) into PbI solution, the carbonyl oxygen of PA molecules undergoes a bidentate coordination reaction with Pb to form an octahedral coordination structure, and the nitrogen atom in the -NH group exhibits weakly acidic properties due to the conjugation effect.

View Article and Find Full Text PDF

Co-existence of mcr-1 and bla from porcine-derived Escherichia coli isolated in China and selection of mcr-1 under cephalosporins pressure.

J Glob Antimicrob Resist

September 2025

Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin 130122, China. Electronic address:

Objectives: The usage of cephalosporins (CEFs) and co-existence of extended-spectrum β-lactamase (ESBL) gene bla in the same host may promote the prevalence of colistin (CST) resistance gene mcr-1. This study aims to investigate the underlying mechanisms how the mcr-1 and bla demonstrate significant co-occurrence in Escherichia coli (E. coli).

View Article and Find Full Text PDF

Exploring potential protein-protein interactions driving unusual fatty acid synthesis in pomegranate.

Plant Physiol Biochem

September 2025

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada. Electronic address:

Many plant-derived unusual fatty acids (UFAs) possess valuable chemical properties and have potential applications in the food, feed, and oleochemical industries. Despite significant interest, the mechanisms by which plants synthesize and accumulate these structurally distinct fatty acids remain only partially understood. While enzyme substrate specificities involved in UFA-containing storage lipid assembly have been well characterized in many prior studies, the biochemical roles of protein-protein interactions (PPIs) in coordinating UFA biosynthesis have received less attention.

View Article and Find Full Text PDF

Autophagy and Bacterial infections.

Autophagy Rep

September 2025

Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.

Autophagy is an evolutionarily conserved cellular process that is prominent during bacterial infections. In this review article, we discuss how direct pathogen clearance via xenophagy and regulation of inflammatory products represent dual functions of autophagy that coordinate an effective antimicrobial response. We detail the molecular mechanisms of xenophagy, including signals that indicate the presence of an intracellular pathogen and autophagy receptor-mediated cargo targeting, while highlighting pathogen counterstrategies, such as bacterial effector proteins that inhibit autophagy initiation or exploit autophagic membranes for replication.

View Article and Find Full Text PDF

A π-Conjugated Molecular Bridge Strategy for Constructing Efficient Hole Transport Pathways in Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

September 2025

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Application

Metal halide perovskite solar cells (PSCs) hold promise for next-generation photovoltaics but are restricted by suboptimal efficiency and poor long-term stability. In inverted PSC architectures, self-assembled monolayers (SAMs) are widely employed as hole-selective layers (HSLs) due to their favorable energy-level alignment and negligible parasitic absorption. However, traditional SAMs often exhibit weak intermolecular interactions, leading to film aggregation, poor interfacial contact, and severe nonradiative recombination.

View Article and Find Full Text PDF