Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Though primarily a tumor suppressor, TP53 harboring specific missense mutations located in the region encoding the DNA binding domain exhibits a gain of function by transcriptional activation of oncogenes. We performed microarray-based messenger RNA profiling of squamous cell carcinoma of the oral tongue (SCCOT) and identified significant elevation of SMARCD1 in samples exhibiting p53 nuclear stabilization. Activation of SMARCD1 by mutant p53 was confirmed by evaluation of additional tongue cancer samples as well as The Cancer Genome Atlas expression datasets. SMARCD1 knockdown in HNSCC cells resulted in a significant reduction in several tumorigenic characteristics including cell viability, ability to form colonies in liquid and solid media and cell migration. We identified significantly increased SMARCD1 transcript levels in tumor versus matched normal samples in SCCOT as well as in other cancer types. Increased SMARCD1 expression predicted poor survival in HNSCC tumors harboring missense p53 mutations. Our results suggest SMARCD1 to be a novel transcriptional target of mutant p53.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29332DOI Listing

Publication Analysis

Top Keywords

mutant p53
12
transcriptional target
8
well cancer
8
increased smarcd1
8
smarcd1
7
p53
5
smarcd1 transcriptional
4
target specific
4
specific non-hotspot
4
non-hotspot mutant
4

Similar Publications

Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.

View Article and Find Full Text PDF

Chemogenetic tuning reveals optimal MAPK signaling for cell-fate programming.

Cell Rep

September 2025

Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:

Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.

View Article and Find Full Text PDF

Prognosis of HPV-independent, p53-wild-type vulvar squamous cell carcinoma: A systematic review and meta-analysis.

Gynecol Oncol

September 2025

Pathology Unit, Department of Oncology, ASST Sette Laghi, Varese, Italy; Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy. Electronic address:

Background: Vulvar squamous cell carcinoma (VSCC) is subdivided into TP53-mutant (TP53) and HPV-associated (HPV). In recent years, a third group unrelated to TP53 mutation or HPV-association (TP53/HPV) has emerged. However, its prognosis is unclear.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a broad spectrum of molecular alterations that influence clinical outcomes. mutations define one of the most lethal subtypes of acute myeloid leukemia (AML), driving resistance to nearly all available treatment modalities, including venetoclax plus azacitidine (VenAza). Yet, the molecular basis of this resistance, beyond affecting transactivation of BCL-2 family genes, has remained elusive.

View Article and Find Full Text PDF

Pharmacologic interrogation of USP28 cellular function in p53 signaling.

Cell Chem Biol

September 2025

Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Deubiquitinating enzymes (DUBs) are crucial regulators of ubiquitin signaling and protein degradation that remain incompletely understood in part due to the lack of high-quality chemical probes. To address this challenge, we developed CAS-010, a low nanomolar, ubiquitin-competitive inhibitor of USP28 that demonstrates preferential activity against USP28 over other DUBs, while also exhibiting some activity against the closely related USP25. We rationalized our SAR trends and observed selectivity using a crystal structure of USP28 in complex with an inhibitor.

View Article and Find Full Text PDF