Cell Chem Biol
September 2025
Deubiquitinating enzymes (DUBs) are crucial regulators of ubiquitin signaling and protein degradation that remain incompletely understood in part due to the lack of high-quality chemical probes. To address this challenge, we developed CAS-010, a low nanomolar, ubiquitin-competitive inhibitor of USP28 that demonstrates preferential activity against USP28 over other DUBs, while also exhibiting some activity against the closely related USP25. We rationalized our SAR trends and observed selectivity using a crystal structure of USP28 in complex with an inhibitor.
View Article and Find Full Text PDFVCP/p97 regulates a wide range of cellular processes, including post-mitotic Golgi reassembly. In this context, VCP is assisted by p47, an adapter protein, and VCPIP1, a deubiquitylase (DUB). However, how they organize into a functional ternary complex to promote Golgi assembly remains unknown.
View Article and Find Full Text PDFHao-Fountain syndrome is a rare neurodevelopmental disorder caused by mutations in the de-ubiquitinating enzyme USP7 (Ubiquitin Specific Protease 7). Due to the novelty of the disease and its poorly understood molecular mechanisms, treatments for the syndrome are currently lacking. This study examines the effects of 11 patient-derived variants located within the catalytic domain of USP7, focusing on their impact on the enzyme's activity, thermodynamic stability, and substrate recognition.
View Article and Find Full Text PDFUbiquitin-specific protease 7 (USP7) is a deubiquitylase essential for cell homeostasis, DNA repair, and regulation of both tumor suppressors and oncogenes. Inactivating USP7 mutations have been associated with Hao-Fountain Syndrome (HAFOUS), a rare neurodevelopmental disorder. Although a range of USP7 inhibitors have been developed over the last decade, in the context of HAFOUS as well as oncogene regulation, USP7 activators may represent a more relevant approach.
View Article and Find Full Text PDFPTEN is an important tumor suppressor protein that is regulated by ubiquitination events which are modulated by deubiquitinases, or enzymes that remove ubiquitin from substrate proteins. As ubiquitinated substrates are beneficial to study deubiquitinase activity and substrate recognition, we have previously developed a semisynthetic strategy to site-specifically install a monoubiquitin on PTEN. This strategy uses a non-natural aminoAla-Cys functionality as a convenient alternative to the synthetically more challenging natural isopeptide linkage.
View Article and Find Full Text PDFTarget-based screening of covalent fragment libraries with mass spectrometry has emerged as a powerful strategy to identify chemical starting points for small molecule inhibitors or find new binding pockets on proteins of interest. These libraries span diverse chemical space with a modest number of compounds. Screening covalent fragments against purified protein targets reduces the demands on the mass spectrometer with respect to absolute throughput, detection limit, and dynamic range.
View Article and Find Full Text PDFNat Commun
February 2023
Primary kinetic isotope effects (KIEs) provide unique insight into enzymatic reactions, as they can reveal rate-limiting steps and detailed chemical mechanisms. HIF hydroxylases, part of a family of 2-oxoglutarate (2OG) oxygenases are central to the regulation of many crucial biological processes through O-sensing, but present a challenge to monitor due to the large size of the protein substrate and the similarity between native and hydroxylated substrate. MALDI-TOF MS is a convenient tool to measure peptide masses, which can also be used to measure the discontinuous kinetics of peptide hydroxylation for Factor Inhibiting HIF (FIH).
View Article and Find Full Text PDF