DNA barcoding of aphid-associated ants (Hymenoptera, Formicidae) in a subtropical area of southern China.

Zookeys

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As one of the most abundant and complex groups of terrestrial insects, ants have associations with many other organismal groups, such as hemipteran insects producing honeydew. With the aim of expanding the knowledge base of ant species associated with aphids, this study analyzed mitochondrial COI barcodes of 301 ant samples for 37 aphid-associated ant species in a subtropical area of southern China. Sequence analyses revealed that the intraspecific and interspecific distances ranged from zero to 7.7%% and 0.2 to 31.7%, respectively. Three barcoding approaches - Automatic Barcode Gap Discovery, Bayesian Poisson Tree Processes and Generalized Mixed Yule-coalescent - were used to help delimit ant species based on COI sequences, and their results corresponded well with most of the morphospecies. All three approaches indicate cryptic diversity may exist within and , with intraspecific genetic distances of 7.7% and 6.24%, respectively. Our analyses also reported five species for the first time from Fujian Province of China, and the COI sequences of nine species are newly added into the GenBank. This study provides information about species diversity of aphid-associated ants in subtropical China and compiles a DNA barcode reference library for future ant barcoding work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795625PMC
http://dx.doi.org/10.3897/zookeys.879.29705DOI Listing

Publication Analysis

Top Keywords

ant species
12
aphid-associated ants
8
subtropical area
8
area southern
8
southern china
8
coi sequences
8
species
6
ant
5
dna barcoding
4
barcoding aphid-associated
4

Similar Publications

Unlabelled: Habitat fragmentation is a major cause of biodiversity loss. Fragmentation can alter thermal conditions on the remaining patches, especially at habitat edges, but few studies have examined variations in thermal tolerance of species in fragmented habitats. Ants are sensitive to both habitat fragmentation and temperature changes, and are an ideal taxon for studying these impacts.

View Article and Find Full Text PDF

Extrafloral nectaries (EFNs) are specialized plant glands that secrete nectar but are not related to pollination. Several ants feed on EFNs and, in exchange, they often attack herbivores, reducing the consumption of leaf tissue and floral parts, and enhancing plant performance. Although most empirical studies and reviews have demonstrated that ant visitation benefits EFN-bearing plants, many others have failed to show ants as protective partners.

View Article and Find Full Text PDF

Living organisms are assumed to produce same-species offspring. Here, we report a shift from this norm in Messor ibericus, an ant that lays individuals from two distinct species. In this life cycle, females must clone males of another species because they require their sperm to produce the worker caste.

View Article and Find Full Text PDF

Biological invasions pose a significant threat to ecosystem stability by altering the taxonomic and functional diversity of native communities. It is still uncertain, however, whether multiple invasive species have varying effects on native communities, or whether their interactions in a co-invasion scenario are antagonistic or facilitative. To address this gap, this study investigated 24 sampling sites in Hong Kong, encompassing single invasion, co-invasion, and non-invaded control scenarios across the dry and wet seasons.

View Article and Find Full Text PDF