Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891103PMC
http://dx.doi.org/10.1083/jcb.201902124DOI Listing

Publication Analysis

Top Keywords

nuclear size
28
nuclear
10
limiting component
8
size
8
cytoplasmic volume
8
reductions cell
8
embryonic cytoplasm
8
volume
5
nucleoplasmin limiting
4
component scaling
4

Similar Publications

Simultaneous determination of Sr and Pu isotopes in marine biological samples.

Anal Chim Acta

November 2025

State Key Laboratory of Loess Science, Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:

Pu and Sr are highly important radionuclides in the environment, which can accumulate in the human body through the food chain and cause radiation exposure. With the continuous discharge of treated nuclear contamination water from the Fukushima Daiichi nuclear power plant, it is crucial to investigate and monitor the levels of Pu and Sr in seafood. However, it is still a challenge to determine Pu and Sr in seafood at environmental levels, owing to their extremely low concentrations, labor-intensive and time-consuming pre-treatment for large-sized samples.

View Article and Find Full Text PDF

The aluminum electrolysis industry generates massive greenhouse gas emissions dominated by CO and perfluorocarbons (PFCs, CF/CF), presenting dual challenges of climate impact and resource waste. Here, we report a robust nickel-based metal-organic framework (SIFSIX-3-Ni) featuring confined square channels (3.55 Å) that achieves the molecular-sieving separation of CO from CF/CF mixtures.

View Article and Find Full Text PDF

Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels.

Mol Pharmacol

August 2025

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:

Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.

View Article and Find Full Text PDF

Neptunium exhibits truly unique chemistry as its speciation is dominated by the neptunyl(V) ion (NpO). Here, we describe the spontaneous destabilization and reduction of neptunyl(V) via complexation to the Keggin-type polyoxometalate (POM) ligand PWO. The POM-mediated reduction of NpO does not require any reducing agent and occurs within minutes, at room temperature, and in aqueous solution.

View Article and Find Full Text PDF

Parasitic diseases caused by Leishmania spp. create considerable health concerns in animals, resulting in a considerable financial impact. They causes a complex infection in equines, affecting weight gain, skin, liver, and spleen.

View Article and Find Full Text PDF