Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microbes can enter into healthy plants as endophytes and confer beneficial functions. The entry of commensal microbes into plants involves penetrating plant defense. Most mechanisms about overcoming plant defense are focused on adapted pathogens, while the mechanism involved in beneficial endophyte evades plant defense to achieve harmonious commensalism is unclear. Here, we discover a mechanism that an endophyte bacterium BSn5 reduce to stimulate the plant defensive response by producing lantibiotic subtilomycin to bind self-produced flagellin. Subtilomycin bind with flagellin and affect flg22-induced plant defense, by which means promotes the endophytic colonization in . Subtilomycin also promotes the BSn5 colonization in a distinct plant, , where the BSn5 was isolated. Our investigation shows more independent subtilomycin/-like producers are isolated from distinct plants. Our work unveils a common strategy that is used for bacterial endophytic colonization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787100 | PMC |
http://dx.doi.org/10.1038/s42003-019-0614-0 | DOI Listing |