Synthesis of CoTe nanowires: a new electrode material for supercapacitor with high stability and high performance.

Nanotechnology

School of Electrical and Information Engineering & Key Laboratory of Smart Grid of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Highly dispersed CoTe electrode material were successfully prepared by using a facile one-step solvothermal process without any surfactants. Compared with the conventional hydrothermally prepared irregularly-shaped CoTe, a regular nanowire-formed CoTe can be obtained by a solvothermal process using ethylene glycol as a solvent. The prepared CoTe nanowire electrode can exhibit a relatively high specific capacity of 643.6 F g at a current density of 1 A g and remarkable cyclic stability with 76.9% of its specific capacitance retention after 5000 cycles at a high current density of 5 A g. Besides, even at the high current density of 20 A g, the specific capacitance of CoTe nanowire electrode still has 90.2% retention relative to 1 A g, showing an excellent rate performance. In order to enlarge the potential window to increase the energy density, an asymmetric supercapacitor (ASC) is assembled by applying CoTe nanowires and activated carbon as the positive electrode and the negative electrode in 3 M KOH, which can enlarge the operating voltage to as high as 1.6 V, and shows a specific capacity of 92.5 F g with an energy density of 32.9 Wh kg and power density of 800.27 W kg at 1 A g, and even after 5000 cycles of charge/discharge at 5 A g, the ASC still retains 90.5% of its initial specific capacitance, showing excellent cycle stability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab4dbfDOI Listing

Publication Analysis

Top Keywords

current density
12
specific capacitance
12
cote nanowires
8
electrode material
8
solvothermal process
8
cote nanowire
8
nanowire electrode
8
high specific
8
specific capacity
8
5000 cycles
8

Similar Publications

To overcome the potential issue of active site blockage by surfactants in colloidal synthesis, alternative synthetic approaches must be explored. In this study, we investigated both solvent-free and colloidal thermolysis routes to synthesize nickel sulfides (NiS and NiS) using sulfur-based Ni complexes, [Ni(SCO(CH))] (Ni-Xan) and [Ni(SCN(CH))] (Ni-DTC) as precursors. The solvent-free decomposition of these complexes produced ligand-free NiS and NiS in the absence or presence of triphenylphosphine (TPP), respectively.

View Article and Find Full Text PDF

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

2D Active Filler Modified Porous Polymer Network for Stabilizing Zn Anode Under Harsh Conditions.

Small

September 2025

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.

Artificial porous polymer coatings are promising for alleviating the side reactions and dendrite growth on Zn anodes. Nevertheless, the low ion transport ability constrains their application under harsh conditions such as thin Zn foil, high current density, and high depth of discharge (DOD). Herein, a 2D active filler is introduced to optimize the Zn migration in porous polymer coating.

View Article and Find Full Text PDF

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Design strategies for energy-harvesting photovoltaics in diverse environments.

iScience

September 2025

Energy Conversion Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, Gyeongsangnam-do 51543, Republic of Korea.

Indoor photovoltaics (IPVs) are small and not optimized for versatile environments, making them environmentally sensitive. To expand the application of energy-harvesting photovoltaics, overcoming the current problems and mismatch loss is important. In this study, we found that IPVs are sensitive to changes in current density under low illuminance, and we introduced a protocol to reveal the modules resulting in the smallest standard deviation using current maps.

View Article and Find Full Text PDF