Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying and validating intermolecular covariation between proteins and their DNA-binding sites can provide insights into mechanisms that regulate selectivity and starting points for engineering new specificity. LAGLIDADG homing endonucleases (meganucleases) can be engineered to bind non-native target sites for gene-editing applications, but not all redesigns successfully reprogram specificity. To gain a global overview of residues that influence meganuclease specificity, we used information theory to identify protein-DNA covariation. Directed evolution experiments of one predicted pair, 227/+3, revealed variants with surprising shifts in I-OnuI substrate preference at the central 4 bases where cleavage occurs. Structural studies showed significant remodeling distant from the covarying position, including restructuring of an inter-hairpin loop, DNA distortions near the scissile phosphates, and new base-specific contacts. Our findings are consistent with a model whereby the functional impacts of covariation can be indirectly propagated to neighboring residues outside of direct contact range, allowing meganucleases to adapt to target site variation and indirectly expand the sequence space accessible for cleavage. We suggest that some engineered meganucleases may have unexpected cleavage profiles that were not rationally incorporated during the design process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6847045PMC
http://dx.doi.org/10.1093/nar/gkz866DOI Listing

Publication Analysis

Top Keywords

substrate preference
8
modifying covarying
4
covarying protein-dna
4
protein-dna interaction
4
interaction changes
4
changes substrate
4
preference site-specific
4
site-specific endonuclease
4
endonuclease identifying
4
identifying validating
4

Similar Publications

The bacterial DNA damage (SOS) response promotes DNA repair, DNA damage tolerance, and survival in the setting of genotoxic stress, including stress induced by antibiotics. In , translesion DNA synthesis can be fulfilled by Y-family DNA polymerases, including DNA polymerase IV (DinB). DinB features a more open active site and lacks proofreading ability, promoting error-prone replication.

View Article and Find Full Text PDF

Canonical and Non-Canonical Functions of Histone H3K4 Methylation Modifiers in Cancer.

Cancer Sci

September 2025

Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Histone H3K4 modifications are altered in the regulation of gene expression and in multiple cellular processes during cancer development and progression. Understanding the roles of H3K4-modifying enzymes will provide novel insights into therapeutic tools for cancer treatment. H3K4-modifying enzymes catalyze the addition or removal of covalent modifications with specific substrate preferences.

View Article and Find Full Text PDF

The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Two monomeric isozymes of catechol 2,3-dioxygenase C23O64 and C23O68 (EC 1.13.11.

View Article and Find Full Text PDF