Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.2174/156720181606190723115802DOI Listing

Publication Analysis

Top Keywords

drug release
4
release pharmaceutical
4
pharmaceutical co-crystals
4
co-crystals therapeutic
4
therapeutic safety
4
safety properties
4
properties active
4
active pharmaceutical
4
pharmaceutical substances
4
substances retained?
4

Similar Publications

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

Microfluidic Microspheres Loaded with Aggregation-Induced Emission Nanomicelles for Theranostic Applications in Osteoarthritis.

Adv Healthc Mater

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.

Methods: Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling.

View Article and Find Full Text PDF

Objectives: The study aimed to combine instant-release and mini-tablet methodologies to develop novel orally disintegrating mini-tablets (ODMTs) for a frequently pescribed antibiotic, cefixime trihydrate (CT), in paediatric patients.

Materials And Methods: CT-loaded microcapsules were prepared using Eudragit EPO and Hydroxy Propyl Methyl Cellulose E50 by spray drying technique. The optimized microcapsules were mixed with co-processed ready-to-use tableting excipients, Ludiflash and Pearlitol 200SD, in different proportions and then compressed into ODMTs and evaluated.

View Article and Find Full Text PDF