Detection of target collagen peptides with single amino acid mutation using two fluorescent peptide probes.

J Mater Chem B

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Collagen with a single amino acid substitution is the main cause of a plethora of heritable disorders such as Osteogenesis Imperfecta and Ehlers-Danlos syndrome. Though significant advances have been achieved in the development of protein assays, it remains very challenging to distinguish a protein with a single amino acid mutation from the wild-type protein. A novel fluorescent self-quenching assay has been constructed to detect target collagen peptides with a single amino acid mutation using two probe peptides. The hybridization of the probe peptide and the natural target collagen peptide results in a complete heterotrimer and strong fluorescence, whereas the mixture of the probe peptide and the mutation collagen sequences leads to a partial homotrimer and pronounced fluorescence self-quenching. The extent of fluorescence quenching is dependent on the identity of the residue replacing Gly following the order of Ala < Ser < Arg, while the Gly-Ala mutation causes the mildest fluorescence loss. The probe peptide-based fluorescence self-quenching assay facilitates specific detection of the target collagen sequence with a single Gly mutation at the nM level. The simultaneous utilization of both probe peptides enables efficient discrimination between different mutation peptides. To our knowledge, our work may be the first report of a robust analytical assay that can identify collagen fragments with single amino acid mutation, which will greatly contribute to deciphering the molecular mechanism of Osteogenesis Imperfecta as well as developing novel diagnostic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb00610aDOI Listing

Publication Analysis

Top Keywords

single amino
20
amino acid
20
target collagen
16
acid mutation
16
detection target
8
collagen peptides
8
peptides single
8
mutation
8
osteogenesis imperfecta
8
self-quenching assay
8

Similar Publications

Evaluating Amino Acid Profiles and Blood Gas Concentrations Between Single and Twin Merino Newborn Lambs.

Anim Sci J

January 2025

Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.

As sheep production standards progress, and animals are bred for high production in terms of the number and weight of lambs weaned per ewe, research has identified a difference in the physiology of single lambs compared to multiple born lambs. The current study aimed to report the baseline amino acid (AA) profiles and blood gas concentrations in newborn, Merino single and twin lambs. From 120 days of gestation, 50 single-bearing and 50 twin-bearing, naturally mated Merino ewes were monitored for signs of approaching parturition.

View Article and Find Full Text PDF

A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.

View Article and Find Full Text PDF

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Background And Aim: The () gene plays a pivotal role in regulating growth, metabolism, and fat deposition in cattle. Genetic polymorphisms in this gene can influence phenotypic traits and may serve as molecular markers for selection in breeding programs. However, comprehensive characterization of gene variants in local Indonesian breeds, such as Madura cattle, remains limited.

View Article and Find Full Text PDF

Synthesis and Reactivity of a Crystalline Zinc-cAAC Radical.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Organic Synthesis of Jiangsu Province & State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.

Reaction of LZnI [L = BuC(N-DIPP), DIPP = 2,6-Pr-CH] with KC in the presence of cyclic (alkyl)(amino)carbene (cAAC) affords a stable radical complex [LZn(cAAC)] (3). Single-crystal structural analysis of 3 shows a short Zn─C bond and concomitant elongation of C─N bond within the cAAC ligand, indicating a significant π-backbonding from the metal to the cAAC ligand. EPR spectroscopy and DFT calculations reveal that the spin density is mainly localized on the carbenic carbon atom, with a small portion on the zinc center.

View Article and Find Full Text PDF