98%
921
2 minutes
20
Lowering cellular prion protein (PrPC) levels in the brain is predicted to be a powerful therapeutic strategy for the prion disease. PrPC may act as an antiapoptotic agent by blocking some of the internal environmental factors that initiate apoptosis. Prion protein (PrP)-knockout methods provide powerful indications on the neuroprotective function of PrPC. Using PrPC-knockout cell lines, the inhibition of apoptosis through stress inducible protein1 (STI1) is mediated by PrPC-dependent superoxide dismutase (SOD) activation. Besides, PrP-knockout exhibited wide spread alterations of oscillatory activity in the olfactory bulb as well as altered paired-pulse plasticity at the dendrodendric synapse. Both the behavioural and electro-physiological phenotypes could be rescued by neuronal PrPC expression. Neuprotein Shadoo (Sho), similarly to PrPC, can prevent neuronal cell death induced by the expression of PrP△HD mutants, an artificial PrP mutant devoid of internal hydrophobic domain. Sho can efficiently protect cells against exito-toxin-induced cell death by glutamates. Sho and PrP seem to be dependent on similar domains, in particular N-terminal (N), and their internal hydrophobic domain. Sho△N and Sho△HD displayed a reduced stress-protective activity but are complex glycosylated and attached to the outer leaflet of the plasma membrane via glycosylphosphatidylinositol (GPI) anchor indicating that impaired activity is not due to incorrect cellular trafficking. In Sho, over-expressed mice showed large amyloid plaques not seen in wild-type mice. However, Shadoo is not a major modulator of abnormal prion protein (PrPSc) accumulation. Sho and PrP share a stress-protective activity. The ability to adopt a toxic conformation of PrPSc seems to be specific for PrP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.036.067 | DOI Listing |
Plant J
September 2025
Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.
View Article and Find Full Text PDFAggregates of the protein α-synuclein may initially form in the gut before propagating to the brain in Parkinson's disease. Indeed, our prior work supports that enteroendocrine cells, specialized intestinal epithelial cells, could play a key role in the development of this disease. Enteroendocrine cells natively express α-synuclein and synapse with enteric neurons as well as the vagus nerve.
View Article and Find Full Text PDFIn most animals, oocyte polarity establishes the embryonic body plan by asymmetrically localizing axis-determining transcripts. These transcripts first localize in and zebrafish oocytes to the Balbiani body (Bb), a large membrane-less organelle conserved from insects to humans. The Bb is transient, disassembling and anchoring at one pole the axis-determining transcripts that establish the vegetal pole of the oocyte.
View Article and Find Full Text PDFCell Rep
September 2025
Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Brain Immunology and Glia Graduate Training Program, University of Virginia, Charlott
Tauopathies encompass a large majority of dementia diagnoses and are characterized by toxic neuronal or glial inclusions of the microtubule-associated protein tau. Tau has a high propensity to induce prion-like spreading throughout the brain via a variety of mechanisms, making tauopathy a rapid and lethal form of neurodegeneration that currently lacks an effective therapy or cure. Tau aggregation and neuronal loss associated with this pathology are accompanied by robust neuroinflammation.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Pharmacy, College of Pharmacy, and Institute of Pharmaceutical Science & Technology, Hanyang University ERICA, Ansan, Republic of Korea.
Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.
View Article and Find Full Text PDF