Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806354PMC
http://dx.doi.org/10.3390/s19194115DOI Listing

Publication Analysis

Top Keywords

improved neural
16
neural networks
16
remote sensing
12
computational efficiency
12
road extraction
8
unmanned aerial
8
aerial vehicle
8
sensing images
8
neural network
8
add convolution
8

Similar Publications

Background: Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting neuroendocrine tumors originating from the embryonic neural crest. Approximately 30% of PPGLs are hereditary and are frequently associated with genetic syndromes, including neurofibromatosis type 1 (NF1). Composite PPGLs, which include components of both PPGLs and related tumors such as ganglioneuromas, are extremely rare in NF1 patients.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Neural Quantum Embedding via Deterministic Quantum Computation with One Qubit.

Phys Rev Lett

August 2025

Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.

Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).

View Article and Find Full Text PDF

Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences.

View Article and Find Full Text PDF