98%
921
2 minutes
20
Background: To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on the carbon density per land use/land cover (LULC) class and in situ carbon and nitrogen data is needed. This allows a better representation of the spatial distribution of carbon and nitrogen stocks across LULC. The aim of this study was to emphasize the relevance of using in situ carbon and nitrogen content of the main tree species of the site when quantifying the aboveground carbon and nitrogen stocks in the context of carbon accounting. This paper contributes to that, by combining satellite images with in situ carbon and nitrogen content in dry matter of stem woods together with locally derived and published allometric models to estimate aboveground carbon and nitrogen stocks at the Dassari Basin in the Sudan Savannah zone in the Republic of Benin.
Results: The estimated mean carbon content per tree species varied from 44.28 ± 0.21% to 49.43 ± 0.27%. The overall mean carbon content in dry matter for the 277 wood samples of the 18 main tree species of the region was 47.01 ± 0.28%-which is close to the Tier 1 coefficient of 47% default value suggested by the Intergovernmental Panel on Climate Change (IPCC). The overall mean fraction of nitrogen in dry matter was estimated as 0.229 ± 0.016%. The estimated mean carbon density varied from 1.52 ± 0.14 Mg C ha (for Cropland and Fallow) to 97.83 ± 27.55 Mg C ha (for Eucalyptus grandis Plantation). In the same order the estimated mean nitrogen density varied from 0.008 ± 0.007 Mg ha of N (for Cropland and Fallow) to 0.321 ± 0.088 Mg ha of N (for Eucalyptus grandis Plantation).
Conclusion: The results show the relevance of using the in situ carbon and nitrogen content of the main tree species for estimating aboveground carbon and nitrogen stocks in the Sudan Savannah environment. The results provide crucial information for carbon accounting programmes related to the implementation of the REDD + initiatives in developing countries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227328 | PMC |
http://dx.doi.org/10.1186/s13021-019-0127-7 | DOI Listing |
Front Microbiol
August 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
GFZ Helmholtz Centre for Geosciences, Potsdam, Germany.
Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.
View Article and Find Full Text PDF