98%
921
2 minutes
20
The amyloid formation of human islet amyloid polypeptide (hIAPP)-an intrinsically disordered peptide, is associated with type II diabetes. Cellular membranes, especially those composed of negatively-charged lipids, accelerate the hIAPP amyloid fibrillation, and their integrity is disrupted during the aggregation process, leading to cell apoptosis. However, the underlying molecular mechanism is not well understood. Herein, we investigated the conformational dynamics during the interactions of hIAPP monomer with POPG membrane bilayer, by carrying out μs-long all-atom molecular dynamics simulations. Starting from the metastable coiled conformations in water, hIAPP monomers tend to adopt transient α-helical and β-sheet structures when adsorbing to the membrane surface. The amphiphilic N-terminal region further inserts into the membrane interior and is located at the lipid head-tail interface, mainly in turn and α-helical structures. In contrast, the β-hairpin structures reside on the membrane surface without insertion, and expand laterally with the hydrophobic residues exposed to the solvent. Moreover, the adsorption and insertion of hIAPP monomers induce two distinct local membrane deformations: (1) the hIAPP adsorption on the membrane surface mainly causes membrane bending; (2) the insertion of both turns and α-helices synchronizes with the formation of hydrophobic defects on the POPG membrane, leading to stronger membrane stretching and a longer coherence length of membrane thinning. Based on the structural and dynamical results, we propose that β-hairpin structures may be a precursor for the fibrillation on the membrane surface due to the flat geometry and hydrophobic regions exposed to solvent, while N-terminal amphiphilic α-helices would facilitate hIAPP assembling into toxic oligomers inside the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp03151k | DOI Listing |
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFJ Infect Dis
September 2025
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA USA.
Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
Biofouling often occurs simultaneously with fogging, presenting significant challenges to visibility, safety, and operational efficiency. The development of biocompatible coatings that offer both antifouling performance and stability under fogging conditions is highly sought after. A method to form multifunctional coatings is presented, utilizing a zwitterionic nanocellulose composite material that demonstrates both antifogging and antifouling properties, suitable for application on various surfaces.
View Article and Find Full Text PDFElife
September 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, United States.
The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.
View Article and Find Full Text PDFJ Morphol
September 2025
School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.
Although the surface micro-ornamentation of the scales within the skin of snakes has been the subject of many previous studies, there has been little work done on the spectacle, a protective (keratinised) goggle separated from the underlying cornea by a sub-spectacular space. The surface ultrastructure of the "Oberhäutchen" of the spectacle is examined in nine species of snakes (five aquatic and four terrestrial) using light and electron microscopy, micro-computed tomography and gel-based profilometry. Significant topographic differences in cell size (increases of between 5.
View Article and Find Full Text PDF