Integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma.

Mol Med Rep

Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China.

Published: October 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The main purpose of the present study was to recognize the integrative genomics analysis of hub genes and their relationship with prognosis and signaling pathways in esophageal squamous cell carcinoma (ESCC). The mRNA gene expression profile data of GSE38129 were downloaded from the Gene Expression Omnibus database, which included 30 ESCC and 30 normal tissue samples. The differentially expressed genes (DEGs) between ESCC and normal samples were identified using the GEO2R tool. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify the functions and related pathways of the genes. The protein‑protein interaction (PPI) network of these DEGs was constructed with the Search Tool for the Retrieval of Interacting Genes and visualized with a molecular complex detection plug‑in via Cytoscape. The top five important modules were selected from the PPI network. A total of 928 DEGs, including ephrin‑A1 (EFNA1), collagen type IV α1 (COL4A1),  C‑X‑C chemokine receptor 2 (CXCR2), adrenoreceptor β2 (ADRB2), P2RY14, BUB1B, cyclin A2 (CCNA2), checkpoint kinase 1 (CHEK1), TTK, pituitary tumor transforming gene 1 (PTTG1) and COL5A1, including 498 upregulated genes, were mainly enriched in the 'cell cycle', 'DNA replication' and 'mitotic nuclear division', whereas 430 downregulated genes were enriched in 'oxidation‑reduction process', 'xenobiotic metabolic process' and 'cell‑cell adhesion'. The KEGG analysis revealed that 'ECM‑receptor interaction', 'cell cycle' and 'p53 signaling pathway' were the most relevant pathways. According to the degree of connectivity and adjusted P‑value, eight core genes were selected, among which those with the highest correlation were CHEK1, BUB1B, PTTG1, COL4A1 and CXCR2. Gene Expression Profiling Interactive Analysis in The Cancer Genome Atlas database for overall survival (OS) was applied among these genes and revealed that EFNA1 and COL4A1 were significantly associated with a short OS in 182 patients. Immunohistochemical results revealed that the expression of PTTG1 in esophageal carcinoma tissues was higher than that in normal tissues. Therefore, these genes may serve as crucial predictors for the prognosis of ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755233PMC
http://dx.doi.org/10.3892/mmr.2019.10608DOI Listing

Publication Analysis

Top Keywords

gene expression
12
genes
11
integrative genomics
8
genomics analysis
8
analysis hub
8
hub genes
8
genes relationship
8
relationship prognosis
8
prognosis signaling
8
signaling pathways
8

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.

View Article and Find Full Text PDF