Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intranasal (IN) drug delivery to the brain has emerged as a promising method to bypass the blood-brain barrier (BBB) for the delivery of drugs into the central nervous system (CNS). Recent studies demonstrate the use of a peptide, RVG9R, incorporating the minimal receptor-binding domain of the Rabies virus glycoprotein, in eliciting the delivery of siRNA into neurons in the brain. In this protocol, the peptide-siRNA formulation is delivered intranasally with a pipette in the dominant hand, while the anesthetized mouse is restrained by the scruff with the nondominant hand in a "head down-and-forward position" to avoid drainage into the lung and stomach upon inhalation. This precise gripping of mice can be learned but is not easy and requires practice and skill to result in effective CNS uptake. Furthermore, the process is long-drawn, requiring about 45 min for the administration of a total volume of ~20-30 µL of solution in 1-2 µL droplet volumes per inhalation, with 3-4 min rest periods between each inhalation. The objective of this study is to disclose a mouse positioning device that enables the appropriate placement of mice for efficient IN administration of the peptide-siRNA formulation. Multiple features are incorporated into the design of the device, such as four or eight positioning chairs with adjustable height and tilt to restrain anesthetized mice in the head down-and-forward position, enabling easy visualization of the mice's nares and a built-in heating pad to maintain the mice's body temperatures during the procedure. Importantly, the ability to treat four or eight mice simultaneously with RVG9R-siRNA complexes in this manner enables studies on a much quicker time scale, for the testing of an IN therapeutic siRNA approach. In conclusion, this device allows for appropriate and controlled mouse head positioning for IN application of RVG9R-siRNA and other therapeutic molecules, such as nanoparticles or antibodies, for CNS delivery.

Download full-text PDF

Source
http://dx.doi.org/10.3791/59201DOI Listing

Publication Analysis

Top Keywords

positioning device
8
placement mice
8
central nervous
8
nervous system
8
peptide-sirna formulation
8
mice
5
delivery
5
positioning
4
device placement
4
mice intranasal
4

Similar Publications

Background: Hospital falls represent a persistent and significant threat to safety within health care systems worldwide, impacting both patient well-being and the occupational health of health care staff. While patient falls are a primary concern, addressing fall risks for all individuals within the health care environment remains a key objective. Caregiver visibility and spatial monitoring are recognized as crucial considerations in mitigating fall-related incidents.

View Article and Find Full Text PDF

Quantum-Size Effect Induced Andreev Bound States in Ultrathin Metallic Islands Proximitized by a Superconductor.

Phys Rev Lett

August 2025

Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.

While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.

View Article and Find Full Text PDF

Achieving optimal alignment and fit is a key aspect of ankle-foot orthosis (AFO) design, as it directly influences the effectiveness of the device. While digital workflows offer the potential to integrate quantifiable alignment measures and corrections into AFO design, a major challenge remains in controlling lower-limb positioning and alignment during 3D scanning. This study aimed to evaluate pediatric AFO alignment and shape differences of directly scanned (live scan) vs casted lower limb models.

View Article and Find Full Text PDF

Doping and Polar Interface-Induced High-Position Sensing in the PEDOT:PSS/Si Heterojunction and Its Multifunctional Optical Imaging.

J Phys Chem Lett

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.

A highly sensitive, self-powered position-sensitive detector (PSD) based on a PEDOT:PSS/Si heterojunction is prepared. Band structure optimization via FS-300 additive doping significantly enhances the built-in electric field, achieving a maximum open-circuit voltage of 0.45 V (0.

View Article and Find Full Text PDF

The role of assistive devices and technologies in the activities and participation in everyday life of children with cerebral palsy - a scoping review.

Disabil Rehabil Assist Technol

September 2025

Department of Special Needs Education and Rehabilitation, Department Pedagogy and Didactics for People with Physical and Motor Development Impairments and Chronic and Progressive Illnesses, Carl von Ossietzky University, Oldenburg, Germany.

Objectives: Many studies investigate the impact of assistive devices and technologies (AD/AT) on physical outcomes. The role of AD/ATs in everyday activities and participation of children with cerebral palsy (CP) has received much less attention. This review scopes the impact of AD/ATs by the activities and participation components of the International Classification of Functioning, Disability and Health (ICF) model.

View Article and Find Full Text PDF