98%
921
2 minutes
20
Purpose: To determine the frequency of co-occurring genes in non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation and the predictive effect of co-mutations on the efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs).
Methods: 54 patients with advanced NSCLC were tested for 422 clinically relevant genes by next-generation sequencing (NGS) before treatment. Among them, patients with EGFR mutation received first-line treatment of EGFR-TKIs. Progression-free survival (PFS) and objective response rate (ORR) were evaluated using Kaplan-Meier methods and compared between two groups using log-rank test.
Results: Among 24 EGFR mutant and 30 EGFR wild-type patients, co-mutation rate was lower in patients with EGFR mutation (62.5% [15/24] vs 93.3% [28/30], p = 0.005). There was lower frequency for co-alterations in BRAF (0% [0/24] vs 20% [7/30], p = 0.033), NF1 (4.2% [1/24] vs 30% [9/30], p = 0.038) and RAS-RAF-MAPK pathway genes (16.6% [4/24] vs 56.7% [17/30], p = 0.003) in EGFR mutation group. 24 patients with EGFR mutation received first-line treatment of gefitinib or erlotinib, with an ORR of 83.3% and a median PFS of 12.3 months (95% CI 10.00-14.60). Co-mutation was associated with shorter median PFS (10.2 months [95% CI 5.20-15.20] vs 15.3 months [95% CI 12.09-15.81]; HR 0.29 [95% CI 0.10-0.82]; p = 0.014) in EGFR mutation cohort. Among patients with EGFR mutation and distant metastasis, median PFS was decreased in those with co-mutations (6.3 months [95% CI 3.25-9.35] vs 22.0 months[95% CI 12.10-31.90]; HR 0.12 [95% CI 0.00-5.87]; p = 0.007) and frequency of PIK3CA (0% [0/12] vs 41.7% [5/12], p = 0.037) and PI3K/AKT/mTOR pathway genes (0% [0/12] vs 50% [6/12], p = 0.014) was lower.
Conclusion: The presence of co-mutations was lower in the EGFR mutation patients and reduces the efficacy of EGFR-TKI, especially in patients with distant metastases. Lower frequency of co-mutation in PIK3CA and PI3K/AKT/mTOR pathway genes may be responsible for promoting metastasis and limiting the efficacy of EGFR-TKIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810358 | PMC |
http://dx.doi.org/10.1007/s00432-019-03001-2 | DOI Listing |
J Thorac Oncol
September 2025
Institut du Thorax Curie-Montsouris, Paris, France; Paris-Saclay University, UVSQ-Versailles, France.
Introduction: Amivantamab plus lazertinib significantly improved progression-free and overall survival versus osimertinib in patients with previously untreated, EGFR-mutant advanced NSCLC. EGFR-targeted therapies are associated with dermatologic adverse events (AEs), which can affect quality of life (QoL). COCOON was conducted to assess prophylactic management and improve treatment experience.
View Article and Find Full Text PDFN Engl J Med
September 2025
Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
Background: Previous results from this phase 3 trial showed that progression-free survival among participants with previously untreated (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC) was significantly improved with amivantamab-lazertinib as compared with osimertinib. Results of the protocol-specified final overall survival analysis in this trial have not been reported.
Methods: We randomly assigned, in a 2:2:1 ratio, participants with previously untreated -mutated (exon 19 deletion or L858R substitution), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib, osimertinib, or lazertinib.
Purpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).
Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).
J Med Chem
September 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
Three generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have shown clinical efficacy in nonsmall cell lung cancer (NSCLC), but acquired resistance mutations─especially the -EGFR─remain a major challenge. Here, we report the identification of a series of pyrrolo[2,3-]pyrimidine derivatives that inhibit C797S-mediated EGFR triple mutants. Among them, compound shows subnanomolar IC values against Ba/F3 EGFR and Ba/F3 EGFR, while sparing wild-type EGFR.
View Article and Find Full Text PDFPurpose: Combinatorial therapies are essential for treating advanced non-small cell lung cancer (NSCLC), particularly overcoming resistance to third-generation epidermal growth factor receptor (EGFR) like osimertinib (OSI). The Hippo signaling pathway, a critical regulator of cell proliferation, apoptosis, and tumor progression, is often dysregulated in NSCLC and contributes to chemo-resistance. This study investigated the potential of epigallocatechin-3-gallate (EGCG), a green tea polyphenol, to overcome OSI resistance by modulating the Hippo signaling pathway, specifically through inhibition of the YAP-1 (Yes-associated protein)-TEAD (TEA domain transcription factor)-CTGF (connective tissue growth factor) axis.
View Article and Find Full Text PDF