Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697069PMC
http://dx.doi.org/10.3389/fnins.2019.00854DOI Listing

Publication Analysis

Top Keywords

vagus nerve
16
auricular vagus
8
avns
8
clinical studies
8
rationale avns
8
engineering aspects
8
physiological
6
current directions
4
directions auricular
4
vagus
4

Similar Publications

Background: Eating disorders such as Anorexia Nervosa (AN) and Bulimia Nervosa (BN) were previously found to partly entail alterations in stress physiology including salivary cortisol (sC), and salivary alpha amylase (sAA) at rest and basal vagal tone (HF-HRV), compared to individuals without mental disorders or with mixed mental disorders (anxiety and depressive disorders), but corresponding data remain scarce and are not entirely consistent.

Method: HF-HRV, sC and sAA at rest were assessed in a female sample of 58 individuals with AN and 54 individuals with BN before and after psychotherapy and contrasted against measurements from 59 female individuals suffering from mixed disorders and 101female healthy controls.

Results: Values for sC were elevated in AN compared to all other groups, those for HF-HRV were highest in both AN and BN and lowest in mixed mental disorders and no differences were found at rest for sAA.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF

The airway-brain axis: Connecting breath, brain, and behavior.

Cell Rep

September 2025

Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect

The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.

View Article and Find Full Text PDF

Vagus nerve stimulation as a novel therapeutic approach for musculoskeletal diseases.

Am J Med Sci

September 2025

Department of Medicine, Division of Rheumatology, University of Oklahoma College of Medicine, Oklahoma City, OK; Department of Medicine, VAMC, Oklahoma City, OK. Electronic address:

Vagus nerve stimulation (VNS) has gained significant attention as a therapy for various medical conditions due to its ability to modulate chronic diseases, pain, and inflammation. VNS delivered by an implanted device is FDA approved for severe epilepsy and refractory depression. VNS delivered with implantable devices or transcutaneous methods are now being studied in several musculoskeletal diseases including osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, and fibromyalgia.

View Article and Find Full Text PDF

Electroacupuncture alleviates intestinal ischemia-reperfusion-induced acute lung injury via the vagus-sympathetic nerve pathway.

Int Immunopharmacol

September 2025

Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China; Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:

Aims: Intestinal ischemia-reperfusion (II/R) injury predominantly causes acute lung injury (ALI), and in severe instances, acute respiratory distress syndrome, both associated with high mortality. Electroacupuncture (EA) excels in regulating autonomic nervous system balance and safeguarding organ function. This study delved into EA's impacts and mechanisms on II/R-induced ALI.

View Article and Find Full Text PDF