Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Here we validate a GC, Flame Ionization Detection (GC-FID), liquid injection method using hydrogen as a carrier gas combining analysis of toxic volatile alcohols (VA): methanol, ethanol, isopropanol, acetone, as well as glycols, ethylene glycol (EG) and propylene glycol (PG), in a single method.

Methodology: 200 μL of calibrator, QC, or patient specimen were deproteinized with 400 μL of acetonitrile containing internal standards (10 mmol/L N-propyl alcohol for VA and 2.5 mmol/L 1,2-butanediol for glycols). GC-FID analysis using hydrogen carrier gas and nitrogen makeup gas utilized an Agilent 7890 system equipped with Agilent 7683 liquid autosampler on a 30 m × 530 μm RTX-200 fused silica column. Method validation included repeatability, recovery, carryover, linearity, lower limit of quantification (LLOQ), accuracy, selectivity and measurement uncertainty.

Results: The 8.3 min from injection to injection reduced time of analysis by 45% over a previously reported method using Helium carrier gas with no loss in resolution. Within-run and Between-run variability were ≤1.4% and ≤6.8% respectively. Recovery was 100% within a 95% confidence interval. Carryover was negligible for all but EG. LLOQ was <1 mmol/L for all analytes. The upper range of linearity was 120 mmol/L for methanol, ethanol and isopropanol, 100 mmol/L for acetone and 50 mmol/L for EG. Analytes demonstrated acceptable accuracy and measurement uncertainty using College of American Pathologists (CAP) criteria. Toluene can cause a false positive EG, while benzene, xylene and 1,3 butanediol can cause false negative EG.

Conclusions: Converting from Helium to Hydrogen carrier gas benefits patient care through a reduction in turnaround time and provides a cost savings to the laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiochem.2019.08.007DOI Listing

Publication Analysis

Top Keywords

carrier gas
16
hydrogen carrier
12
flame ionization
8
ionization detection
8
detection gc-fid
8
ethylene glycol
8
gas
5
rising helium
4
helium hydrogen
4
carrier
4

Similar Publications

Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Are Clouds a Neglected Reservoir of Pesticides?

Environ Sci Technol

September 2025

Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.

Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.

View Article and Find Full Text PDF

Advances of gas molecules against radiation damage.

Biochem Biophys Res Commun

September 2025

State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China. Electronic address:

There is an increasing population receiving radiotherapy every year, during which unexpected damage to normal tissues often occurs unavoidably. How to mitigate the radiation-induced injuries and enhance patients' life quality remains a pressing challenge. Recently, gas molecules employment has emerged as a novel therapeutic modality, garnering increasing interest from researchers.

View Article and Find Full Text PDF

While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.

View Article and Find Full Text PDF

Promoting exciton dissociation of covalent organic frameworks via donor-acceptor characteristic modulation for enhanced HO photocatalytic production.

J Colloid Interface Sci

August 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt. Electronic address:

Post-synthetic modification (PSM) offers a promising approach for tailoring the compositional, structural, and electronic properties of covalent organic frameworks (COFs), thereby enhancing their exciton dissociation ability and facilitating charge transfer. The effectiveness of these approaches is largely compromised by the harsh conditions, complexity, and alteration of the original structure. Therefore, developing a facile yet effective PSM for modulating COFs' properties without altering the original geometry and/or structure is a challenge.

View Article and Find Full Text PDF